
www.it-ebooks.info

http://www.it-ebooks.info/

PHP Team Development

Easy and effective team work using MVC, agile
development, source control, testing, bug tracking,
and more

Samisa Abeysinghe

 BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

PHP Team Development

Copyright © 2009 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2009

Production Reference: 1240809

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847195-06-7

www.packtpub.com

Cover Image by Ed Maclean (edmaclean@gmail.com)

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Author
Samisa Abeysinghe

Reviewers
Deepak Vohra

Garvin Hicking

Acquisition Editor
Sarah Cullington

Development Editor
Dilip Venkatesh

Technical Editors
Mehul Shetty

Akash Johari

Copy Editor
Leonard D'Silva

Indexer
Monica Ajmera

Editorial Team Leader
Akshara Aware

Project Team Leader
Lata Basantani

Project Coordinator
Rajashree Hamine

Proofreader
Joel T. Johnson

Production Coordinator
Adline Swetha Jesuthas

Cover Work
Adline Swetha Jesuthas

Drawing Coordinator
Nilesh R. Mohite

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Samisa Abeysinghe has nearly ten years of industrial experience with various
software projects. He has been an Apache committer for many years and has worked
for software product companies as well as software services companies.

Samisa was the project leader for WSO2 Web services Framework for PHP projects
for a couple of years and has an in-depth understanding on the enterprise use of
PHP. He has been involved in helping many project teams use WSO2 WSF/PHP for
enterprise projects.

As director of engineering at WSO2, Samisa now looks after multiple teams working
on various projects on a daily basis and gets involved with defining and fine-tuning
processes and practices to ensure a project's success.

Samisa is also the author of the book RESTful PHP Web Services.

I would like to thank all the people who have worked with me on
software projects from the day I started working in the software
industry. All those people have greatly helped me in understanding
this complex domain.

I would like to mention the WSO2 team, including Sanjiva
Weerewarana-CEO, and Paul Fremantle-CTO, all the members
of the engineering leadership, as well as all the engineers. While
it has been a pleasure to work with such a skilled team, it has also
helped me to understand the software engineering realities better
in practice.

I would also like to mention the great helping hands rendered by the
technical reviewers of this book as well as the project coordinator of
this book.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Deepak Vohra is a consultant and a principal member of the NuBean.com
software company. He is a Sun Certified Java Programmer and Web Component
Developer, and has worked in the fields of XML, Java programming and J2EE for
over five years. He is the co-author of the Apress book Pro XML Development with
Java Technology and was the technical reviewer for the O'Reilly book WebLogic:
The Definitive Guide. He was also the technical reviewer for the Course Technology
PTR book Ruby Programming for the Absolute Beginner, and the technical editor for
the Manning Publications book Prototype and Scriptaculous in Action. Deepak is also
the author of the Packt Publishing books JDBC 4.0 and Oracle JDeveloper for J2EE
Development, and Processing XML Documents with Oracle JDeveloper 11g.

Garvin Hicking is a passionate web-developer, who is engaged in open source
projects like Serendipity (Lead Developer) and phpMyAdmin. He works at the
Internet agency Faktor E GmbH in Bonn (Germany). Being up-to-date, he has been
involved in writing or reviewing several books about PHP, the most recent one being
the official documentation of the PHP-Blog application Serendipity. Aside from his
professional work, he and his girlfriend enjoy taking professional photographs.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents
Preface 1
Chapter 1: Software is Complex 7

Need for teams 9
Software engineering principles to help 10

Use a process 12
Divide and conquer 13

Guarantee reuse 14
Guarantee integration 15
Prevent regression 15

Vertical versus horizontal division 15
Continuous integration 18
Patterns as solutions 19
Process for success 20

Tools 21
Source code control 21
Continuous builds 23
Issue tracking 24
Communication 25

Summary 27
Chapter 2: MVC and Software Teams 29

Software design patterns 29
MVC pattern 31

Intent 31
Motivation 31
Solution 32

Model 32
View 32
Controller 32

How MVC can help 33

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[ii]

MVC helps with change 34
Implementing MVC with a team 37

Aspects of the presentation layer (view) 38
The overall team distribution 42

Integration challenges 42
Summary 43

Chapter 3: Dealing with Complexity 45
Frameworks to simplify complexity 46

How can frameworks help? 46
Expectations from frameworks 49

Simplicity 50
Size of the framework 50
Performance 51
Security 51
Separate HTML from PHP 52
AJAX support 52
No restrictions 52
Object-oriented versus functional 53
Code quality of the project 53
Enforce best practices 54
Configuration needs 55
Internationalization 56
Documentation 56
Community 57
Commercial support 58
License 60
Vendor locking 61
Availability with hosting 61
Some more points to ponder 62

Team success with frameworks 62
Technical feasibility study of the framework 64
PHP Frameworks 65

Limb 65
phpDrone 65
ZNF 66
ATK 66
Akelos 66
CakePHP 67
CodeIgniter 67
Zend Framework 67
PHP Work 68
Symfony 68

KISS—beyond frameworks 68
Beyond frameworks 69
People are complex 69

Avoid NIH 70

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iii]

Innovation 70
Embrace change 70
Simplicity is a mindset 71

Summary 72
Chapter 4: The Process Matters 73

Process and product 74
Ignoring the process 77
Process must be respected 78
From no process to some process 81
Process helps not hinder 83
Simple process for PHP projects 84

User requirements 85
Modeling what the users want 86

Data modeling 86
Business modeling 87

User activity analysis 88
Designs and implementing the data layer 88
Designs and implementing the business layer 89
Design and implementation of the user interface 90

Summary 93
Chapter 5: Agile Works Best 95

Introducing agile philosophy 96
Agile values 96
Agile principles 96
Individuals and interactions 97
Working software over comprehensive documentation 98
Customer collaboration 99
Responding to change 99
Customizing agile to our needs 100

Common fears for developers 100
Producing the wrong product 100
Product of inferior quality 100
Getting late to complete the project 101
Too much work in too little time 101

Traits of agile team members 102
Competence 102
Common focus 102
Collaboration 102
Decision-making ability 102
Fuzzy-problem solving ability 103

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iv]

Mutual trust and respect 103
What is agility 103

Characteristics of an agile process 105
Principles of agility 105

Extreme Programming (XP) 107
XP planning 107
XP design 108
XP coding 108
XP testing 109

Advantages of agile development process 109
Team agility 110
Agile process models 111

Adaptive Software Development 111
Dynamic Systems Development Method 112

Dynamic Systems Development Method's life cycle 112
Scrum 112

Backlog 113
Sprints 113
Scrum meetings 114
Demos 114

Feature Driven Development 114
Agile Modeling 115

Agile for the PHP team 115
Pair programming 115
Sustainable working style 116
Information-driven workspace 117
Fixing the process 117
Sitting together 118
Ubiquitous language 118
Stand-up meetings 119
Demonstrate the iteration outcome 120

Summary 120
Chapter 6: Ways of Collaboration 123

Team work is challenging 124
Team members make assumptions 125

Making integration possible 126
Source control 127
Bug control 130
Configuration management 136
Tools for communication and collaboration 140

Tracking tools 144
Summary 146

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[v]

Chapter 7: Continuous Improvement 147
Dealing with change in PHP applications 148
Ensuring process effectiveness 150

Ensure you are improving 153
Evolving PHP applications 153
People development 156
Teams and success 157

Managing the team 158
Leadership 159
Quality focus 160
Constant monitoring 160
The team is human 160

Summary 161
Index 163

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface
This book is about ensuring project success for PHP teams. It explores technical
as well as non technical aspects that matter when achieving project success. On
the technical front, designing to divide complexity to conquer complex problems,
keeping things simple in the design, choosing the right process, and monitoring and
improving the process are important aspects. On the non technical front, making
sure that they collaborate effectively, the team should be open to changes. The team
should be open to user feedback. Having the right mindset about quality and other
aspects related to project success are discussed.

What this book covers
Chapter 1, Software is Complex, explains the complexities that we face while working
with today's software projects. PHP projects, some years ago, used to be small
projects involving one or two people. However, today, we need teams of people
for PHP projects. This chapter explores the need for teams for PHP projects. It also
discusses how software engineering principles help with PHP projects. There is an
increasing need to use a process for PHP projects. The complexity of having a team
is figuring out how to divide the project's problem among team members and solve
it. This chapter discusses how to divide and conquer projects. We will discuss how
patterns help the PHP project to cope with complexity. Finally, we will explore how
to use tools to manage the development and collaboration within the PHP team.

Chapter 2, MVC and Software Teams, discusses the MVC pattern in depth and how
MVC can help in a PHP project. It also explores how to use the MVC pattern as the
guiding principle to break down the complexity of a project, and how to implement
MVC with a team. It also discusses the integration challenges that are faced in putting
together all the pieces of MVC that are developed by different team members.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[2]

Chapter 3, Dealing with Complexity, discusses in depth how we can make use of
software design patterns to cope with complexities in a software project. We will
also discuss how PHP MVC frameworks simplify the complexity of a project. When
using a PHP framework, there are a bunch of expectations; we will explore what to
expect and what to look for in a PHP framework. The mere use of a PHP framework
would not guarantee project success. Hence, we will discuss how to achieve team
success with PHP frameworks in this chapter. We will also look at some leading PHP
frameworks. Moreover, we will also learn how to make things simple while using a
PHP framework.

Chapter 4, The Process Matters, explains the relationship between the process and the
product. We will discuss, in depth, the consequences of ignoring the process and
why the process must be respected. We will learn how to move from no process to
having a process. We will explore the motivation that is required for a process, how
a process helps, and does not hinder a PHP project. We will also study a simple
process model that can be used for PHP projects.

Chapter 5, Agile Works Best, will introduce agile philosophy, including agile values
and agile principles. We will discuss common problems and fears that developers
face when developing a product, and see how agility can help to overcome them.
We will discuss extreme programming principles, and also learn the advantages
of agile process models. Finally, we will explore how we can achieve team agility.

Chapter 6, Ways of Collaboration, discusses the challenges faced while working with
teams, and we explore the implications of assumptions made by team members.
Then we will learn collaboration techniques for ensuring seamless integration of the
various components and layers developed by the team members. We will dig into
the details of source control, bug control, and configuration management, and learn
how those relate to effective team collaboration. Moreover, we will discuss some
tools that we can use for communication and collaboration.

Chapter 7, Continuous Improvement, will explain how to deal with change in PHP
applications. In order to make sure the software that we develop is useful, we have
to make sure that we are willing to embrace change and also be ready to evolve
the system, as we move along. We also have to ensue that the process being used is
effective. We will discuss how we can evolve the PHP application and also measure
the effectiveness of our process. People development is also another important aspect
of continuous improvement when ensuring success with teams. We will learn the
team management and people development aspect in this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[3]

What you need for this book
This book does not assume any prerequisites. If you have worked with a project team
on a PHP application, it will make it easier to relate to your experiences. However,
if you are a beginner, and want to learn what it takes to work with a team and be
successful, this book will provide a wealth of knowledge.

Who this book is for
This book is for PHP developers who work in complex PHP projects. Those who
want to know the secrets of success for PHP projects that meet the complex demands
of today's enterprise can benefit from this book.

This book can also be useful for project managers who are looking to be successful
with PHP projects.

Those who are acting as stakeholders of PHP projects, such as clients, or those who
want to sponsor PHP projects, can also learn what to expect and how to deal with
PHP project team with this book.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Once a
developer starts working on the issue, the issue will transit to In-progress state".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[4]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an email to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or email
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book on, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code for the book
Visit http://www.packtpub.com/files/code/7542_Code.zip to
directly download the example code.
The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration, and help us to improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the let us know link, and entering the
details of your errata. Once your errata are verified, your submission will be accepted
and the errata added to any list of existing errata. Any existing errata can be viewed by
selecting your title from http://www.packtpub.com/support.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[5]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or web site name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Software is Complex
Useful software evolves over time in order to adapt to the ever changing
environment and to cope with the ever increasing demands in the real world.
Therefore, useful software becomes increasingly complex over time. This
phenomenon applies to PHP applications as well.

During the early days of PHP, the systems written were fairly simple and
straightforward. In fact, when Rasmus Lerdorf first developed PHP, the objective
was very simple—'Make my life easy with dynamic web applications'. It was a one
person effort to start with. Over a period of time, more and more individuals got
interested in PHP and used it for their own web applications. Their applications
were simple, hardly exceeding 100 PHP scripts and, more often than not, managed
by a single person.

As more people gained interest in PHP, for its simplicity and ease of use, the
number of use cases increased. This resulted in people wanting to do more with
PHP, especially with the rise of the Internet and enterprises looking into using
Internet for business applications. The Novel Applications of the Web 2.0 era also
increased the demand for rich applications on the Web, along with the need for
powerful programming options.

PHP, as a scripting language, has evolved remarkably to meet up to the new
requirements. Therefore, as we all know, PHP became the language of choice
for the majority of complex and interesting applications that are deployed on
the Internet today.

If you look around the Web, some of the most used applications such as Flickr
(http://www.flickr.com/) and Facebook (http://www.facebook.com/) are
PHP-based. Any web hosting solution that is found around the Web today provides
support for PHP. Drupal (http://drupal.org/), Joomla (http://www.joomla.
org/), and WordPress (http://wordpress.org/), the popular content management
systems that are deployed by millions, are all PHP-based.

www.it-ebooks.info

http://www.it-ebooks.info/

Software is Complex

[8]

As the adoption of PHP becomes wider and the use becomes broader, the feature
set and tools continue to expand. At the same time, organizations tend to choose
PHP as the language of choice for complex web applications, because it is battle
tested, hardened over time, and proven to work. Thus, the chances of the software
project you are involved with being PHP-based is very high. Also, the number of
organizations that use PHP-based tools is also high. The following image shows the
popularity of the programming languages (Source: http://www.tiobe.com/index.
php/content/paperinfo/tpci/index.html):

The leading programming languages, Java, C, and C++, are very different form PHP.
Java and C++ are used to implement enterprise as well as desktop applications.
Many people still use C to implement systems software such as operating systems.
Even the PHP engine is implemented in C. On the other hand, PHP is popular in a
very different domain, namely Web Programming. As you can see, PHP is the leader
when it comes to web-based programming.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[9]

Be it that your software project is using PHP or a tool based on PHP, given the
complexity of today's software, you need a team of people. In other words, the days
when one person could handle the development of a platform are long gone. Today's
web applications are much more complex compared to the private home pages. For
example, the PHP-based web application platforms like Flickr are quite complex web
applications that are completely written in PHP. We are also seeing that blogging
web applications are replacing private web sites at a very fast rate, and the blogging
platforms are completely implemented in PHP.

In this chapter, you will learn:

•	 The need for teams for PHP projects
•	 How software engineering principles help with PHP projects
•	 The need for a process for PHP projects
•	 Dividing the project problem and conquering it
•	 How patterns help with PHP projects
•	 Using tools to manage the development and collaboration within

the PHP team

Need for teams
We need the help of a team of people to successfully implement a solution to a
complex problem. When we are trying to implement a solution for some problem,
one of the obvious questions would be whether to implement the solution on our
own or to look for ready made solutions which are available out there. There are
many hosted solutions that can be found on the Internet for individual use these
days. For example, you could go to a web hosting site and deploy your web site
based on WordPress. You can also use one of many blogging tools and make it
your home page. So if the task is simple, there is no point having a team of PHP
developers to do the job. If the problem that we are looking to solve is complex,
 and if there are no readymade solutions available out there, we need to form a
team to help solve the problem. Sometimes, we'll be able to find open source projects
that solve the problem that we have been looking to solve. However, most of the
open source projects are looking to solve generic problems. Most of the enterprises
would have unique business problems to be solved. Hence, we might need a team
of developers to implement that custom solution for the enterprise.

www.it-ebooks.info

http://www.it-ebooks.info/

Software is Complex

[10]

Implementing a more customized, value added, enterprise applications requires
a team of developers. This is required, especially, given today's competitive
marketplace, and given that almost all organizations make use of information
technology. It is not the mere existence of a software application that matters most
today. Rather, the application should meet the expectations of the enterprise,
by being agile, flexible, and designed to deal with the ever changing business
environment. For example, take a developer portal; you can easily use a content
management system such as Drupal or Joomla! for hosting it. However, to customize
it to meet the organizational objectives and maintain it over time, you might need
more than one PHP developer—and that is a team.

If you look into a more complex enterprise scenario, such as online trading or social
networking, your team could consist of around 10 to 100 people, or even more. Many
PHP-based dynamic web sites could be managed effectively with about two good
PHP developers. However, the number of members that you need in a team is very
much dependant on the nature of the PHP project at hand. Apart from the design and
coding activities, we need to take into account the testing and documentation effort in
a project. We might also need to take into account the effort required to maintain the
software, providing bug fixes, and facilitating change requests.

So it is obvious that you need a team, and you might already be part of a team.
Perhaps this is the reason why you are reading this book, or you might want to
join on organization where there are teams.

Software engineering principles to help
People have worked as teams on software projects for many years. Can the same
techniques be used for your team PHP project? Yes they can. Then why read this
book, and not read a regular book on software engineering? It is always good to
have an understanding of software engineering principles, but in this book, we
will explore how to blend the simplicity and power of PHP with evolving software
engineering principles and tools. For example, how do you blend the agile process
with tools such as Wikis and forums? This book will guide you to improve your
success rate with projects, involving PHP.

In software engineering, there is a concept called process rigor. Based on the nature
of the team and the technologies used, you can afford to vary the rigor with which
you follow the process. You need not stick to the theory of the process, rather follow
it the way that is most suited for your team. The process should help you get there
and build a quality product. The process should help, and not hinder.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[11]

Many people associate PHP with simplicity and overlook the need to be declined
when working with a team. This is also partly related to the fact that many complex
programming constructs can be implemented very simply with PHP. For example,
compare Java code for reading a file with that of PHP.

The following is the Java code for reading a file:
import java.io.*;

class ReadFile {

public static void main(String args[])
{
 try
 {
 BufferedReader in = new BufferedReader(
 new FileReader("test.txt"));
 String str;
 while ((str = in.readLine()) != null)
 {
 System.out.println(str);
 }
 }
 catch (IOException e)
 {
 }
 finally
 {
 in.close();
 }
}

The following is the PHP code for reading a file:
<?php
echo file_get_contents("test.txt");
?>

However, the fact that the programming language is simple and powerful does
not mean that the nature of the software that you develop is simple. PHP is simple
because it is less strict compared to Java or C++. Typepage, syntax alternatives,
flexible parameter width, and so on, make it easier for writing something in a quick
'n' dirty style. Unfortunately, that is one of the areas where it gets complex for big
projects with teams. If you give more parameters than the function reads, nothing
will notify you. If you take the size of the API as criterion of simplicity, Java should
be simpler than PHP because there are some functions, like System.arraycopy(),
String.endsWith(), that you would need to implement by hand in PHP. So while
PHP has evolved to a level where it can be used for complex projects, we also need
to pay attention to these finer aspects that decide our success.

www.it-ebooks.info

http://www.it-ebooks.info/

Software is Complex

[12]

When you learn the programming language, you often worked on your own, but on
your day job you need to work with other people. What you develop needs to work
with what others develop. And if you build Application Programming Interfaces
(APIs), others need to use those and you also need to use APIs implemented by others.
APIs are the means by which we can share the functionality that we implement with
other developers. When a certain PHP class or function has widespread use, we can
hide the implementation details behind the API and share only the API with the rest
of the world. This is a very powerful mechanism while breaking down the system into
manageable sub-parts and getting various team members to work on them.

Use a process
Therefore, you need some discipline, and a process. You need to learn how to
work in parallel with others on different aspects of the same project. The parts
from different developers will be integrated together at some point in time, and
once integrated, they need to work seamlessly. Having said that, the PHP project
team—that works on the PHP project for an organization—can also benefit from
the luxury of the PHP language, being powerful and flexible. Therefore, you do
not need a rigorous process either.

So where is the fine balance? Many software professionals now turn to agile
processes. PHP teams can greatly benefit from an agile process, because PHP
can help you live with agile values.

The agile process focuses on the agility of the team and the team working on the
project focuses more on the delivery of a quality project, rather than getting stuck
in a rigorous process. Rather than focusing on following the process, the agile
principles focus on getting things done and getting them delivered to the client.

The values emphasized by agile methodology are:
Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan
(Source: www.agilemanifesto.org)

It is evident from the previously stated agile values that we are more focused on
making customers happy by trying to deliver what the customers want.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[13]

Divide and conquer
Two minds are better than one. The whole is greater than the sum. You need a
team because the problem at hand is difficult. However, you need to be organized
and have discipline in the team in order to be successful. The best way to attack a
complex problem is to break it down, into separate manageable parts.

When the problem is broken down, each sub problem could be solved in order to
solve the whole problem. In the break down phase, it is a good practice to adhere
to separation of concerns principle. For example, the user interface deals with
presenting the application to the user. Based on inputs provided with the user
interface, you carry out the business logic processing. For example, let's say that
there is an application to help users query for the values of different stocks. The
presentation would let the user enter a stock symbol. Once the user submits the
form, the stock symbol would be sent to the backend, and the business logic would
try and locate the quote for the given symbol. There isn't much business processing
in here, just a query. However, in the next step of the application, the user might
want to buy some stocks. At the presentation layer, the user will specify the symbol,
and the quantity that he or she wishes to buy. When this request is submitted, the
business logic layer would extract the stock price for the given symbol from the data
layer, multiply that by the number of stocks that the user wants to buy, and provide
that to the presentation layer. The presentation layer would display the total value
to the user.

Here, presentation and business logics are separate concerns. The Business Logic
Layer can also be broken into computations and retrieving and storing to persisted
data storage. Computation is a separate concern compared to data storage. As an
example, retrieving the price for a given stock symbol from the database is one aspect
and computing the total cost using the price and the number of stocks is another.

Presentation Layer

Business Logic Layer

Data Persistance Layer

Once the problem is broken down based on separate concerns, you can get different
members of the team to work on different aspects of the application.

www.it-ebooks.info

http://www.it-ebooks.info/

Software is Complex

[14]

In a single PHP script, all aspects, such as presentation, computation, and data
retrieval, could be done very easily. You can present a form to the user, get input,
connect to the DB, retrieve relevant data based in input values, do the computation,
and send the result back. However, that is something a novice programmer would
do. An experienced programmer would use the MVC (Model View Controller)
pattern. Patterns are proven solutions to well known problems. The rationale is that,
the kind of problems that we are trying to solve when implementing a system, must
have been seen by other developers in the history of computing, and they must also
have solved those. Therefore, rather than trying to reinvent the wheel, we can benefit
from the kind of solutions that has been used.

If the system is complex, using patterns alone would not help. This is because there
are a few aspects that you need to address.

Guarantee reuse
Make sure that common functionality and common classes are not duplicated and
not written multiple times by various team members.

In the evolution of programming techniques, people have moved from functional
programming to Object-Oriented Programming (OOP). In the functional approach,
a program is a collection of function calls. While this technique helped us achieve
some level of reuse, when it comes to maintaining the system, the life gets harder.
This is because the data manipulation in the system is spread across the system,
and controlling which function changes which set of data is hard.

To solve the problem of uncontrolled data, people came up with the concept of
encapsulation is the object-oriented paradigm. The rationale was to encapsulate the
data and functions that process those together into a concept called an object class.
Related data would be kept together, along with the methods that process them, so
that it is clear, which method changes which data. In object-oriented programming,
a program is a collection of objects, and an object is an instance of a class, which
encapsulates the data and related functions.

While in functional programming, the units being reused are functions, in
object-oriented programming, the unit of reuse is a class. The key difference is that
in a functional case, there is no control over the data reuse, while in object-oriented
programming, the object classes being reused have both data and methods that
process those encapsulated together.

Be it fictional programming that you are using or object-oriented programming, you
need to make a conscious effort to pay attention to reuse. It must also be noted that
the object-oriented programming style encourage reuse naturally, and therefore it is
easier to achieve reuse with object oriented design, compared to a functional design.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[15]

Guarantee integration
The 'I did my part my way' kind of mindset is not going to work in a team setup.
Especially when it comes to API design, we must find common ground, and make
sure that all of the members of the team understand the conventions and norms used.
Even when doing the internal implementation, the individual programmer can tend to
assume that it is his or her own code and follow personal preferences. But in a complex
system, when you think of bug fixing or improving the functionality of a given piece
of code and the original programmer is not around, the other team members should be
able to manage the situation. Therefore, even the variable naming and the algorithms
used have significance in a project done by a team of developers.

Make sure that what you do does not break what others have done and vice versa.
After all, everything that the members of the team implement needs to work together
as one system.

Changes are inevitable. Any living software system must change and evolve, to
adapt to the changing real-world conditions, for that system to be useful.

Prevent regression
When multiple people work in parallel, the chances of bugs being introduced in the
system is very high. It is always a good practice to keep the system at a working and
operational state, irrespective of missing and yet to be implemented features. One
of the most well known techniques to keep the system working all of the time is to
make sure that there is a comprehensive set of unit tests. At least all of the major
functionality, if not all functionality, must be covered with a unit test. This way,
whenever you make a change or update, we can run the test suite to ensure that
nothing has broken. That simply ensures that the team would end up with a high
quality working system. Deferring bugs until late is not a good practice, and will
demand more cycles from the team members in the long run.

Vertical versus horizontal division
Earlier, we discussed the divide and conquer approach for a complex solution, and
stressed the need for separation of concerns. When separating concerns, you can
either divide it horizontally or vertically. An example of dividing horizontally would
be to address the presentation layer by one team, business logic by another team, and
database layer by yet another team.

www.it-ebooks.info

http://www.it-ebooks.info/

Software is Complex

[16]

Dividing vertically would mean to separate the system logically based on various
functionality. For example, listing the products, purchasing a selected product,
and product delivery related tasks could be handled by different sub-teams.
The sub-team would handle all of the functionalities in the completion; meaning
presentation, business logic, as well as data persistence, for each functionality
would be entirely handled by the respective sub-team.

Listing Products Purchasing a
Selected Product

Product Delivery

Whatever the separation style, the cross-cutting concerns come into play. Cross-cutting
concerns are those aspects of the system that has system wide impact. One important
example is logging. We need to use a consistent approach, especially in the format of
log messages, throughout the system. Another important example is authentication.
We have to be consistent with respect to authentication throughout the system. We are
not supposed to use different authentication mechanisms for the same system. If we
do, there are chances that we might leave behind some security holes in the systems.
We might have to verify all different authentication mechanisms into the system. If
we leave behind even one authentication mechanism by mistake, that would open
up a possible back door into the system—risking the security of the entire system.
Therefore, authentication needs to be handled in a consistent manner throughout the
system. Therefore, we are better off providing a single, unified authentication library
for the entire system. And one sub-team should work on that aspect. This would
not only ensure consistency, but would also ensure enhanced reuse. Reuse will be
enhanced because one interface would be used by all other modules in the system
for authentication. In addition, this approach of addressing cross-cutting concerns by
a given sub-team eases integration pains. If each sub-system used its own security
module for authentication, then when all of those sub-parts are put together, in other
words integrated, there would be numerous integration pains.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[17]

For example, if one module did not take all aspects into account while authenticating
a user, that might open up a security hole in the overall system. If there was one
module to address security, you can fix it and the improvement would be reflected
across the entire system. Fixing each module would be really painful. The approach
where cross-cutting concerns such as security are separated prevents regression
issues. If the security module is broken, it is obvious where to fix it.

Consistency also applies to the presentation layer. Often, we use a common template
to guarantee a consistent look and feel. A template helps us to define the common
subset of the web pages in our presentation layer. When the data gets updated, we
just need to fill in the placeholders with those data into the template. This way, we
do not have to worry about the entire page all of the time. In addition, we need to
have consistency across all web pages in a unified system. We can use a common
template to achieve this, and when we want to update the look and feel of the
entire web site, we just need to change the template and the entire site would get
updated. This way, we can save time and energy spent on changing hundreds of
pages. It is a common practice for developers to use tools or a library to help with the
template. This is due to the benefits such as consistent API, specific feature sets, and
recognizable template markup across the project that the template engines provide
us. This way, system maintenance and management becomes very easy. But that
does not mean that we do not need to pay attention to consistency when developing
content to be embedded into the templates.

Even the content that is to be embedded could have layout concerns. For example,
where in the page the content will be placed and how the content will be presented.
The content that fills in the main templates would come from modules, which
again are in the form of smaller templates. But when we choose the layout and the
formation of the content within those, we need to ensure consistency. For example,
if the data is presented as a list of bullets, would that fit into the rest of the larger
template layout? Should that content be a set of links? After all, the entire page that
the user sees is a single web page formed using multiple sub parts.

Therefore, in practice, it is easier to have the entire system broken in terms of
horizontal concerns, to achieve team success. It makes it easy to deal with changes.
On one hand, there are people who know the domain, and on the other hand, we can
easily identify the areas to be changed and also easily pin point the problem location
if we happen to run into bugs.

Bugs are inevitable, and a complex system will have bugs. The success criterion is
how fast we can locate those bugs in order to fix them. In my experience, it is not bug
fixing that takes time, but rather locating the bugs in terms of understanding where
and why things are going wrong.

We can try and reduce the number of bugs through the process. However, changes
in design and implementation would always lead to bugs.

www.it-ebooks.info

http://www.it-ebooks.info/

Software is Complex

[18]

Continuous integration
Continuous integration helps when it comes to easing integration pains. In the
context of a PHP project, continuous integration means that, rather than trying to
deploy only those scripts that one or few developers implement on a developer's
machine, all useable libraries and PHP code developed so far, needs to be put
together by all developers in their local machines and test their own bits and pieces.
Alternatively, all of the team members can use a staging server onto which they
deploy all of the PHP code that they develop, at least on a daily basis, and run the
tests on that staging server. This ensures that all individual pieces are integrated
together on a regular basis.

If separate sub-teams of the team keep on working on the independent aspects for
too long, then the chances of surprises when the system is integrated is higher. It is
a good practice to integrate on a daily basis. This will make the overall system break
too often, but at the same time, you can solve the problems early. As mentioned
earlier, a common staging server can be used by the team for daily testing. It is a bad
idea to use the live site for this kind of testing. This model saves time over time. For
example, the presentation layer, that is the web page, might have assumed an older
interface on the back end. The business logic library implementers added another
parameter to the method being invoked. For the front end, this might mean an
additional element in the inputs form, and these kinds of changes are accumulated
over time. For a project where development is very active, this may mean a drastic
change—even within a week. The back-end folks might have made assumptions too,
about the front end, when they implemented their code, so those need to be fixed
earlier in the development cycle as well.

These sorts of drastic changes and lack of understanding would prevail in the early
stages of a project. The developers in the team would be learning what is required
by users and also how to design the system. Therefore, a prototyping model would
help a great deal in here, where the team develops something for the sole purpose
of understanding the system and get over the assumptions.

Obviously, continuous integration requires aggressive code sharing. Therefore, you
must seek help from a code sharing system, for example, Subversion (SVN). SVN
is a source code revisioning system that can be used to keep track of the differences
in the source code, but it also can act as a source code repository. So in addition to
comparing differences between your local changes and the latest code in the central
code repository, you can also make use of SVN to merge your changes to the central
repository, so that you share your local changes with the others. This way, it becomes
a source code sharing system.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[19]

You also need unit tests to verify and guard against regression. As it was mentioned
earlier, unit testing helps us guard against regression issues. We need all developers
working on the project to write their own unit tests that test each area that they
develop in isolation. Once we have those unit tests, life becomes easy to test the
system when upgrading and changing the system. Unit tests can be automated,
so that the developers need not worry about running the test framework manually.
To make sure that unit tests are really run, we can integrate those to the staging
server update process. This ensures that whenever a developer adds something
to the staging server, the entire unit testing framework is run. If anything is broken,
a notification could be triggered.

All of this needs to be controlled carefully. Therefore, you need the application of
software engineering principles. When we talk about integration, there are numerous
practices that we can learn from the software engineering principles. Defining a
process for change control, techniques to be followed when implementing testing,
and quality assurance practices are some examples where established software
engineering principles can help us.

Patterns as solutions
Patterns can help make the software more robust and capable of dealing with change.

For many PHP applications, MVC is the most useful pattern. This is because PHP
is used for web-based applications. However, they are not just web pages, but are
applications based on backend business logic. There are numerous other patterns
such as observer/observable, iterator/for each, and handler chain, which can be of
use in the design of the system.

Controller
Model

Customer Order

loadCustomer()
saveCustomer()

loadOrder()
saveOrder()

View

Customer ID

Order ID

www.it-ebooks.info

http://www.it-ebooks.info/

Software is Complex

[20]

Model View Controller
Model: It represents the data on which the application operates
View: It renders the data from the model into a form suitable for
interaction, typically a user interface
Controller: It responds to events, typically user interactions, and may
invoke changes on the model

Applying a pattern just saves time and effort. We need to be aware of the problems
and solutions that the patterns try to address in general, to make use of patterns
effectively. A pattern is a description of a problem and the potential solution to
it. There is no standard answer for all problems that we find when working on a
software project. So it helps to be aware of the problems, and be capable of adapting
the solution suggested by the pattern to suite the problem at hand. Many software
professionals have used patterns over the years and the patterns are proven to
work. You might have used patterns without knowing that it is a pattern, but not
knowing the principles would lead to creative chaos. It is always advisable to spend
some time and learn the principles behind the software patterns for any developer.
Having the knowledge about problems that can appear, and the potential solutions
to those problems, adds to the experience of a good PHP developer. The effort spent
on understanding the patters would help the PHP team members in the long run.
It would even be a good idea to train the entire team on patterns with hands-on
examples in the early stages of a project.

Many frameworks or tools support patterns out of the box. All that is required is to
apply the pattern carefully to your application. It is also important to make sure that
everyone in the team understands the pattern, as well as how the pattern applies to
the problem at hand.

Process for success
A process helps people to streamline what everyone is doing to make sure a successful
product, in our case the software, is built. As mentioned earlier, given that PHP is
simple, people tend to overlook the need for a process in PHP-based software projects.
A process that defines the set of activities, the ordering of those activities, input and
outputs of those activities, and is followed in a given sequence, produces the right
outcomes. For example, we need to analyze the system, design it, implement it, test it,
and deploy the system into production, followed by maintenance.

Complex software needs some process in place. It is not required to be too religious
about the process. However, you need to pick and choose the right process for you
and make sure that all members of the team on board follow the process as expected.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[21]

Today, many people follow an agile process, or agile-like processes. The focus of an
agile process is to make sure that we effectively deal with change and deliver the
product sooner. Earlier in the chapter, the agile principles were introduced.

The values of the process focus on getting things done sooner and in an easy to turn
around manner.

The agile process promotes development iterations where tasks
are done in small increments with minimal planning, rather than
long-term planning. Success with an agile process also depends
on teamwork, collaboration, and process adaptability throughout
the life cycle of the project.

Tools
For any project, we need the help of tools in order to be successful. Earlier in this
chapter, it was explained how complex today's software projects are. We discussed
the need for teams of software developers. Likewise, tools are essential for the
success of software projects these days.

Tools make sure that we make fewer errors, be consistent with our approach to
design, development testing, and that we are effective and productive in the way
we approach the project.

We can seek the help of tools for source control, automated unit testing, issue
tracking, communication and collaboration. Without proper tools, it would have
been hard, if not impossible, to achieve success in these areas of a project.

Source code control
Source code revisions should be maintained so you can revert to an old code if
necessary. Source code control is a must. It is especially helpful in situations where
you are troubleshooting to locate the cause of an issue. If you know a broken feature
was working some time back, you always can revert back to a known point and try
to locate the change in code that caused the problems.

Source control also helps to keep in touch with what others are doing to the code by
having a look at the change summaries. Most source code control systems support
a means of evaluating the difference between the central source code repository and
the local copy that a developer has, that he or she might have changed. With SVN,
all that you need to do is to run the following command:

svn diff

www.it-ebooks.info

http://www.it-ebooks.info/

Software is Complex

[22]

When you work in a team, collective code ownership is a must. The commands
such as svn diff make your life easy when living in a world where the source
code is shared.

There are various source code controlling tools around. For example, SVN
(http://subversion.tigris.org/) and GIT (http://git-scm.com/) are the
most popular source code controlling tools nowadays. We will visit source control
tools, and more importantly best practices, later in this book.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[23]

The concept of revisions, as shown in the preceding screenshot, helps to keep track
of the changes that each developer in the team has done on the PHP source code.
Whenever a change is done and is integrated with the central source code repository,
it will be identified by a unique revision number. Revision numbers given to changes
are continuous, and that helps to figure out the exact sequence of changes that has
gone into the source code between two points in time. This makes it much easier to
pinpoint problem causing changes, from among a sequence of changes that has taken
place on the source code.

Continuous builds
Make sure that everyone builds the system regularly, at least once a day. If the
system is too large, make nightly builds. A build is a package where everyone's
changes to the source code are included, and all of the elements of the software
system are present. When the developers are busy with their own sub-modules,
PHP classes, interfaces and unit testing the sub-modules, it can be easily overlooked
to put all pieces of the system together and give it a test run.

For PHP, there is no compilation involved. There are cases where packages can
be compiled and packaged in PHP, which correlates to something similar to
building. For example, when developing PEAR packages and creating automated
documentation, you would build the system. So what does it really mean to say 'do
continuous builds?' Why bother with builds at all when working with PHP? There
are numerous use cases in which continuous builds come into play. For example,
those who are working on the database might change the database configuration
or data schema. People who are working on libraries might refactor their code and
change script paths or method signatures. This is possible, because everyone is
busy developing in parallel. For maximum utilization of team resources, especially
people, as well as to deliver the system sooner, you need to work in parallel. There
is a drastic difference between working in parallel and deploying in parallel. When
delivering a system, we need to define a set of milestones that we want to achieve
as the project progresses. Each milestone would be achieved with a series of work
iterations. Before deploying to the live system, for the purpose of integration testing,
we would need to deploy the milestones to a staging server. Continuous builds are
meant for testing with staging deployments and not for the real-life deployment of
an application.

Due to the dynamic nature of the project and the way the team members' work,
when you put all of the pieces together, the final picture would look drastically
different from what you would see in isolation. You need to make sure that everyone
sees the big picture on a regular basis.

www.it-ebooks.info

http://www.it-ebooks.info/

Software is Complex

[24]

When you are working with a team of people, there are various sub-groups within
the team, who are experts in various domains. Some are designers and developers.
Some are user interface design experts. Some are experts in testing and quality
assurance. When you are working in a project, you need to keep all of these team
members posted about the latest status. The designers, developers, and UI designers
need to know what progress has been made so far. You also need to give the latest
picture to the quality assurance (QA) team on a regular basis. In traditional software
engineering, the quality assurance team would wait until they are given a release
pack or a QA build. But with agile process, you can make the QA team be part of
the daily process, helping to find issues on a daily basis. Continuous integration
eliminates big surprises in terms of integration efforts.

Issue tracking
Talking about QA, keeping track of issues in the system is very important. It makes
life easier when you know what issues were found, what issues are still open, what
were fixed, and when those were fixed. Sometimes, due to regression, some issues
might even get reopened.

You can assign issues to team members and schedule issues so that other
stakeholders of the project get to know when the issues will be attended to.

Not only bugs, but also improvements, wish lists, tasks, and so on can be tracked
with an issue tracking system. This makes sure that all good ideas are noted and
attended to at some point in time.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[25]

There are numerous tools that are available, both open source and commercial for
bug tracking. Jira (http://www.atlassian.com/software/jira/) and Bugzilla
(http://www.bugzilla.org/) are two popular bug tracking tools.

Communication
Communication is a critical factor for the success of a software project team. No
matter how technically competent your team members are, if the communication
is not perfect, the entire team could fail.

If the interface between presentation and business logic layers are to be changed,
then all of the members of both the presentation and business logic sub-teams should
know about the change. It is not only the fact that the interface is going to change
that needs to be communicated, but also the rationale for the change, who gets
affected, what to expect, and what needs to be done by each member to make the
change successful.

There are many forms of communication, and there are many tools to help you
with communication. You can have face to face meetings and design and code
review sessions. Wikis for documenting and noting down discussion points, are
shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Software is Complex

[26]

Mailing lists and forums can be used for discussions. Likewise, chat rooms can be used
for discussions. However, discussing in a chat room is very different from discussing
in a forum or mailing list. A chat room is real time (synchronous), whereas a mailing
list or a forum has a time lag involved (asynchronous). Unlike in a chat room, you need
to wait until the others respond to the emails or the forum entry. On the other hand,
mailing lists and forums are archived (as shown in the following screenshot), so they
can be used as informal documentation as well. Instant messaging is another great
channel that can be used for communication. Instant messaging also comes with great
archiving facilities.

Various forms of communication can be used for various communication needs
of the team. It is helpful to ensure that every team member understands the need
for communication as well as the means of communication to use, based on the
information being communicated.

We will discuss the tools and techniques for communication, in detail, later in the book.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[27]

Summary
In this chapter, we discussed why we need teams to work on software projects,
and in particular, on PHP software projects. Along with the evolving real world
requirements, the PHP software too needs to evolve, thus they become complex
over time.

Since PHP is being used for complex enterprise systems nowadays, we need help
from the software engineering principles to deal with the PHP projects. However,
given the power and simplicity of PHP, we can choose the rigour process to suite
our needs.

Separation of concerns helps us deal with complex projects, dividing the problem
into smaller, more manageable parts. Dividing the system based on cross-cutting
concerns help teams to deal with complexities easier.

Continuous integration, use of patterns and using the right process, help achieve
team success with any software project. For PHP, MVC is the most used pattern.
Given the power and simplicity of the PHP programming language, we can
leverage the agile process values for PHP projects.

Source control tools, issue tracking tools, continuous builds, and tools that help
with proper team communication such as Wikis, forums, mailing lists, and instant
messaging chat rooms can be used to improve your team PHP project success.

In the next chapter, we will explore the MVC pattern in more detail and discuss
how we can ensure a team can get involved with the MVC pattern in a PHP
software project.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

MVC and Software Teams
The software patterns help software professionals to reuse the proven solutions to
well-known problems. MVC (Model-View-Controller) is one such design pattern,
mostly used in applications where user interfaces are involved.

Many PHP applications will have a web-based user interface. Even if you develop
a PHP utility library to be used by other programmers, when they use that library
in the real world, there will be some presentation logic, in other words a user
interface, involved.

In this chapter, we will learn:

•	 The software design patterns
•	 The MVC pattern
•	 How MVC can help in a PHP project
•	 Implementing MVC with a team
•	 Integration challenges

Software design patterns
The rationale for the use of patterns is very simple. We face problems when we
develop software. We might face problems on making decisions about which
algorithms to use, what is the most suitable design, what techniques to use, and what
modules to use. The chances that the same kind of problem has been encountered
by some other software professionals are very high. If someone else has faced the
same problem before us, the chances of them having solved the problem is very high.
If someone already solved the kind of problem that we are trying to solve, we are
better off learning from that solution which is already available, rather than trying
to reinvent the wheel.

www.it-ebooks.info

http://www.it-ebooks.info/

MVC and Software Teams

[30]

Every problem is unique. Therefore, every solution should also be unique. So how can
we use someone else's solution to our problem? The rationale for the use of software
patterns is not about picking up ready made solutions to problems. Rather, the patterns
guide us on how to approach a problem. In the previous chapter, we discussed
dividing and conquering a problem. When we divide a larger problem into smaller
manageable pieces, those smaller problems can seem familiar. For example, we might
need to sort a list of elements, before displaying them. We can use a sorting algorithm
here, and there are plenty of implementations of sorting algorithms out there.

The sorting algorithm is more of a ready made solution. When it comes to design,
the patterns can guide us in the right direction in terms of what is to be done. For
example, the MVC pattern helps us to figure out how to separate out presentation
from business logic and data. That is just a guideline. We can use the guidelines
and implement our solution based on that. Software patterns help us reuse known
solutions to common problems, and then customize those to our needs.

A design pattern is a general reusable solution to a commonly
occurring problem in software design.

When software design patterns are documented, there are some elements that must
be present in the documentation to help understand the pattern better. Some of the
most important documentation elements for a design pattern are:

•	 Name: A unique name that helps identify the pattern and can be used when
referring to the pattern

•	 Intent: The reasons and goals for using the pattern
•	 Motivation: The problem scenario and the context in which this pattern can

be used
•	 Solution: The solution this pattern provides to the problem at hand

The use of design patterns helps us solve our problems in a more effective manner,
saving time and making sure of quality solutions. There are multiple benefits in the
use of design patterns:

•	 Learning from others' experiences, especially from experts in the software field
•	 Using the guaranteed solution to a problem at hand, because the problem has

been already solved and is proven to work
•	 Saving time by not re-inventing a solution that has already been found
•	 Helping eliminate software design issues, and cut down troubleshooting and

debugging time
•	 Using common jargon to describe problems and solutions can help a great

deal with communication, which is critical for team success by allowing
everyone to share knowledge with ease

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[31]

MVC pattern
MVC is a widely known pattern that guides us to separate the presentation, logic,
and data in an application where there is a user interface involved.

Intent
In many software applications, we need to retrieve data from a data store and
display it for the user. If the user changes the data, the software application needs
to store the updates in the data store. Because the flow of information is between
the data store and the user interface, we are inclined to tie the data storage and the
user interface together. This will reduce the amount of coding and also improve the
application performance. However, this approach has some significant problems.
The user interface tends to change much more frequently than the data storage
system. Therefore, we should be able to change the user interface, without having
to worry about the data storage.

For example, let's say that the data access logic and the presentation logic are in the
same PHP script. We connect to the database, retrieve the data, and display that in a
table. You first have the table headers declared, then the database access logic, and
finally you use the results from the query and print them in a loop inside data table
elements. The presentation logic, which displays the data in a table and the data
access logic, which accesses the data elements from the result set, are in the same
PHP code. Now imagine that we need to change the presentation from a table to an
ordered list. As the presentation and data access are in the same PHP file, we need
to take great care that we do not change the data access logic while changing the
presentation logic.

Having code that ties those two layers together would affect the data store, even
though we just want to change the user interface. Another problem with coupling
the data and user interface pieces together is that business applications tend to
incorporate business logic that will be more complex than just transmitting data
from user interface and the data store. We might also want to isolate business logic
processing to help us deal with software application complexities better.

Motivation
How do we modularize the user interface functionality of a web application so that
you can easily modify the individual parts, such as the user interface, business logic,
and data storage?

www.it-ebooks.info

http://www.it-ebooks.info/

MVC and Software Teams

[32]

Solution
The following diagram shows the high-level formation of the three elements in
MVC—the model, view, and the controller:

Controller
Model

Customer Order

loadCustomer()
saveCustomer()

loadOrder()
saveOrder()

View

Customer ID

Order ID

Model
The model represents the data on which the application operates. The model
manages the behavior and data of the application domain. It responds to requests
for information from the view and responds to instructions to change information
from the controller. In the context of PHP, the model corresponds to the database
schema. The database management system plays a key role in PHP applications
when it comes to data persistence.

View
The view renders the data from the model into a form suitable for interaction, typically
a user interface. In other words, the view manages the display of information. In the
context of PHP applications, the view corresponds to the HTML-based presentation
that is delivered to the user, to be displayed with a web browser.

Controller
The controller responds to events, typically user interactions, and may invoke changes
on the model or the view. In the context of PHP applications, the controller is the
actual PHP code that deals with the business processing. It also couples with the HTTP
logic—given that the PHP application's main delivery channel to the users is HTTP.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[33]

Both the view and the controller depend on the model. However, the model does
not depend on the view or the controller. This is one of the key benefits of the
separation of concerns. This separation allows the model to be implemented and
tested independent of the visual presentation. In web applications, the separation
between view and controller is very well-defined. For example, the browser which
presents the view to the user is completely separate from the server side components
handling the HTTP request. So even though the interface rendered on the browser
is generated on the server side, the interface that is meant to be rendered on the
browser (the HTML page prepared to be sent to the browser), is completely separate
form the logical elements that process and compute the data to be presented to the
user. The MVC pattern is a fundamental design pattern for the separation of user
interface logic from business logic.

How MVC can help
MVC is a very good example of separation of concerns. It helps us to break down a
system into view (presentation layer), controller (business logic layer), and model
(data layer). Let us look at a simple example.

Assume that we want to store data about people in our system. We want to store the
name and age of these people. Rather than the age, we will store the date of birth—
this makes the application more agile over the years. As people grow older, we will
not need to change the database content. Suppose we want to list all of the teens in
the system. For this, we query the database for the date of birth, compute the age of
the person at business logic layer, and present the view to the user. If the user wants
to sort every one by age to locate the youngest ones, the user should be able to do
that on the view—click on the title of the age column, and the sorting will be done.

Controller
Model

View

loadTeenagers()

Name DOB
Foo

Alpha
Beta

Gamma
Bar

96/10/03
83/01/02
89/12/13
86/05/03
93/11/23

Teenagers

Name Age

Foo
Bar

13
16

www.it-ebooks.info

http://www.it-ebooks.info/

MVC and Software Teams

[34]

The preceding image shows the mapping of MVC into a real implementation. The
model stores names and dates of birth for the people. The controller loads the teenagers
form the model, based on the simple logic implemented in the loadTeenagers()
function. The data set provided by the controller is then presented to the user. When
the user is looking at the view, he might want to sort the list either by the name or
by the age. So the user will click on the column header. Based on the column clicked,
the presentation layer, that is the browser would be able to come up with the correct
sorting using some AJAX magic.

MVC helps with change
Dealing with change is one of the key challenges in any software system. Therefore,
PHP-based systems also need to face that reality. Changes can be of many forms
and can happen at any layer of the software system.

Let's look at a library system as an example.

Say that the library used to rent only books, but now it plans to add DVDs. The data
model must change, because the information to be stored for a book is not the same
as for a DVD. For example, there is no ISBN for a DVD. This change might not affect
the business logic (controller) or presentation layer (view), for renting aspect, if the
item borrowing policies for both the item types (that is, books and DVDs) are the
same. For example, the borrowing policy is two books for two weeks or two DVDs
for two weeks or one book and one DVD for two weeks. However, note that the data
input forms must be updated, and we will need to add new forms for DVDs. There
are two different presentation forms for registering books and DVDs into the system:

Controller

Model

View

Presentation Layer

Business Logic Layer

Data Layer

Borrow item
form

Return item
form

borrowItem()
returnItem()

Books DVDs

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[35]

After some time, the librarian or the management committee of the library may
decide to change the renting policy, rather than keeping the same policy for different
items such as books and DVDS. Earlier, two books, two DVDs, or a book and a DVD
could be borrowed for 2 weeks. Considering the increased demand, now the policy
is to be changed for DVDs. Only one DVD can be borrowed by a single user and only
for one week. This affects the business logic layer (the controller) and if the system
is designed in synchronization with MVC, neither the presentation layer nor the DB
layer need to be changed.

Earlier, the logic was:

if ($numberOfItemsBorrowed < 2)
 borrowItem ($itemNo)

But now the logic changes to:

if ($item is book AND $numberOfBooksBorrowed < 2)
 borrowItem($itemNo)
else if ($item is DVD AND $numberOfDVDsBorrowed < 1)
 borrowItem ($itemNo)

After some time, there could be another change request. Earlier, the same form
was used to borrow books and DVDs, and the librarian at the counter did not see
the current borrowing information on screen. The librarian just entered the item
information into the form, and would get to know if the user was really able to
borrow a book or a DVD only after submitting the form. If the borrowing was
successful, the user will get a success message and if there was an error, an error
message would have been displayed.

To improve ease of use, the librarian is requesting to see the current borrowings
of a user, as a report, so that he can have a glance at the library user's item
borrowing status.

This change is a user interface enhancement and only affects the presentation
layer. We do not need to edit the business logic layer or the database layer for this
enhancement. There is no workflow change associated here as the change is only
to facilitate the need to information by the librarian.

As we can see, the MVC pattern helps a great deal when it comes to changing,
enhancing, and evolving the system over time.

The MVC patterns help us to easily identify the areas of change and facilitate the
change requests from system users. This is very useful in any software system,
irrespective of the scale of the system.

www.it-ebooks.info

http://www.it-ebooks.info/

MVC and Software Teams

[36]

In addition to helping us locate the piece of logic to be changed, an indirect advantage
of MVC is that by isolating changes to a particular layer, it prevents regression issues
in the system. One of the key challenges in changing a working system is the difficulty
of making the change without breaking the existing functionality. If not for MVC,
we might have a situation where we have mixed up the business logic, presentation,
and data access. Therefore, a change done, say to improve presentation, cannot be
guaranteed to not have affected the other areas.

In most of the systems, it is the business logic (in other words, controller) and the
presentation layer (also known as view) that are likely to change more than the data
model. In comparison to business logic, presentation is far more likely to change on a
regular basis.

Business logic will need to change with the dynamic business environment. For
example, the following situations would enforce changes to the business logic layer:

•	 Change in government regulations
•	 Business strategy changes by competitors
•	 Various market conditions

Controller

Presentation Layer

Business Logic Layer

Data Layer

View
• Change 1: Improve usability
• Change 2: Enhance look and feel

• Change 1: Sync up with external
environment changes

• Change 2: Enhance business process

Model
• Change 1 : Expand data captured
• Change 2 : Improve data model for

performance

In most PHP applications, we might need to keep on improving the presentation to:

•	 Improve usability
•	 Enhance the look and feel

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[37]

For example, we might decide to give a face lift by changing the entire look and
feel, and thus aesthetics of the system. We shouldn't do this too often though, as
the faithful users would be annoyed. In the current Internet space, Search Engine
Optimization (SEO) is also a huge challenge. We should be able to change the titles
and links of the pages, to facilitate SEO aspirations—especially in order to have
meaningful and content dependant titles. Therefore, changes to the presentation
layer might be regular—on a weekly basis, if not on a daily basis—to make it better
as well as to achieve better rating with search engines (such as Google).

View can have dynamic components too, so that dynamic aspects like keyword
integration are not hard-wired within a view, but can relate to controller variable
assignment as well. This will make sure that we do not need to change the
application every time the search engine keywords are changed.

Implementing MVC with a team
In the previous chapter, we discussed how separation of concerns would help when
working with a team. We can divide the system into separate parts with independent
concerns and get sub-teams to work on each separate aspect in parallel, and integrate
all those individual pieces of the puzzle at a later stage.

Controller

Model

View Presentation Layer

Business Logic Layer

Data Layer

www.it-ebooks.info

http://www.it-ebooks.info/

MVC and Software Teams

[38]

The preceding image shows how we can distribute our team to map the elements of
MVC. Team members can be assigned to each layer, based on each person's expertise.

The MVC pattern helps us identify key layers of a system with ease. At the highest
layer, we can divide the system into MVC and get the sub-teams to work on
each aspect.

The simplest assignment is to assign each layer to a sub-team. Thus, presentation,
business logic, and database layers will each be handled by a separate sub-team. You
can have UI experts assigned to the presentation layer, database experts to the data
layer, and those who have a good understanding with algorithms and who have a
good knowledge of how the business works to the business layer.

Aspects of the presentation layer (view)
In a complex system of the system, even the sub-team might need to be further
divided into various aspects of each layer. For example, the presentation layer,
that is the view, would have various aspects to deal with, such as:

•	 Reports
•	 Output filtering
•	 Forms
•	 Input validation
•	 AJAX and DHTML
•	 Interfacing with control and model
•	 Presentation templates
•	 Graphics and styling
•	 UI testing

Based on the complexity, one or more individuals can own each space. If the system
is small or medium scale, you could have one individual owning multiple aspects.

Complexity versus number of team members: While deciding on the
number of people you'll need in a software team, it is important to
understand the system complexity. System complexity is an indicator
of the amount of work involved.

A simple criterion that can be used to gauge the complexity of the presentation layer
is the total number of forms and reports that the system will have. It usually is the
case that each and every form, and each and every report will have its own PHP file.
So the presentation layer complexity measuring criteria can be defined in terms of
the number of PHP scripts in the presentation layer.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[39]

One of the obvious concerns that can arise here is determining how we will know
the number of PHP scripts that are going to be in the presentation layer during this
planning phase of the project? This is because we have not done any coding as of
now, and we are trying to gauge the complexity of the system. The idea here is to
come up with some estimate of the number of forms and reports that will be there in
the system. When we are gathering the user requirement, and analyzing the system,
we can easily collect this data.

If available, we can make use of historical data on similar projects that we have
done in the past. We can get the number of PHP files in the presentation layer, and
correlate that to the current project we are going to work on.

When PHP logic is decoupled from the presentation specific aspects such as HTML,
AJAX, XML, and so on, we need to take those into account as well, in order to gauge
the complexity of the presentation layer.

In general, number scripts in the overall system can be used to gauge the
overall system complexity as well.

www.it-ebooks.info

http://www.it-ebooks.info/

MVC and Software Teams

[40]

The diagram above shows an example form that the users can use to query for issues
in a bug tracking system. This was taken form a hosted instance of a JIRA system for
WSO2 WSF/PHP. As you can see, the form is quite complex, and can have serious
backend controller logic associated with it. However, this form is a form with average
complexity, and it is the number of these kinds of forms that you need to take into
account when gauging system complexity.

Presentation layer complexity: The total number of forms and reports, in
other words the total number of PHP scripts, in the presentation layer can
be an indicator of presentation layer complexity.

The amount of aspects an individual can handle is based on the individual skills.
Some individuals can handle multiple tasks whereas some would prefer to have
focused work. Therefore, the task assignments need to be based on individual traits
and preference.

This is an example report, again from the JIRA issue tracking system of WSO2
WSF/PHP project. This is a report with average level of complexity. Note that the
most important aspect of a report is the provision for the users to customize the
report to their needs. The amount of customizability increased the complexity of
the controller logic as well as the presentation layer logic.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[41]

The business logic layer, or the controller, in general would have the following areas
to focus on:

•	 Data validation
•	 Providing interface to the presentation layer
•	 Using the database layer interface
•	 Algorithms
•	 Business domain specific processing

The controller takes care of the updates and access to the data. Therefore, at this
layer, knowledge about the domain is critical.

The team members working at this layer should have the ability to learn domain
specific knowledge. This is because when you move from one project to another,
you need to learn new domains. It does not necessarily mean that the team members
working at other layers do not need to know the domain. Rather, it is those who
work on the business logic layer that need to have the greatest problem domain
specific knowledge. Specifically, they need to learn the dynamics of the business.

Like in the case of the presentation layer, you can gauge the complexity of the
business logic layer to determine how many team members to have in the sub-team
and how to allocate work. For the business logic layer, the number of PHP classes
in use, if it is an object-oriented system, or the number of functions in use, if it is a
functional system, can provide us with a general idea on the complexity of the system.

Business Layer Complexity: The number of PHP classes, or the
number of PHP functions in the business logic layer, can be an
indicator of business logic layer complexity.

Model, or the data layer, also has different aspects to be taken into consideration:

•	 Database design
•	 Queries and stored procedures
•	 Object classes map to data objects
•	 Data access layer
•	 Interface to the business logic and presentation layers

Again, like in the business logic layer, the database design requires a considerable
amount of domain knowledge. However, rather than the business dynamics, it is the
entity relation model that you need to worry about at this layer. Entity relationship
models are abstract representations of data and help us to capture the data model at
a conceptual level.

www.it-ebooks.info

http://www.it-ebooks.info/

MVC and Software Teams

[42]

When we are using PHP, we always have the luxury of the flexible database support
that the PHP scripting language provides us. For example, we can make use of PHP
Data Objects (PDO)—http://www.php.net/pdo—which abstracts out the data access
layer. We can use this to the maximum, when dealing with model. The other aspect is
the queries and stored procedures being used in this layer. All SQL is supposed to be
written inside model, or the data access layer. These would be somewhat influenced by
the business logic layer processing. Therefore, there should be good rapport between
business logic layer folks and database layer folks. However, that should not lead to
tight coupling of these layers. The stored procedures, if used, tend to be dependant
on business logic. Therefore, it is advisable to refrain from using stored procedures as
much as possible, as that can violate MVC principles.

The complexity of the database layer would be mainly governed by a couple of
aspects. We can get a gauge of complexity looking at the number of tables in the
database. However, this is very much a flat view, or in other words a static view,
of the system. A more realistic view of system complexity would be indicated by
the number of queries or prepared statements in use at the database layer. You can
determine your team member assignments, based on these complexity measures at
this layer.

Data layer complexity: The number of database tables, or the
number of queries and stored procedure in the data layer, can
be an indicator of data layer complexity.

The overall team distribution
MVC provides us with a good frame work when separating concerns in a PHP-based
project. At the highest level, we can break down the team into the three elements of
this design pattern. Then, when we further drill down, we can further break down
each layer, and assign independent tasks to each member of each sub-team. As
always, the key challenge is to ensure that each piece of work, done by individuals at
each layer, work with each other in a seamless manner. The advantage of using the
MVC pattern is that, across layers, we have well defined integration points, at which
we would worry about integration. So as long as all of M, V, and C, work on their
own, it is only a matter of putting them together and they should work seamlessly.

Integration challenges
You will run in to integration challenges, first and foremost, if you did not adhere to
the principles in the design pattern. The simplest thing to remember is not to cross
boundaries and that is the basic idea of the separation of concerns.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[43]

Pay attention to boundaries in your design. Do not cross domains.
The view should not control data or store data. Rather, it should only
display data. Similarly, controller and model should focus on their
respective responsibilities.

Always make sure that the team members of your team consciously ask the question,
'Is this within my boundary?'. The idea is to not pass the balls across to the others,
but to stick to good design norms. The idea is pretty simple. The presentation should
never process data, but only present information to the user.

Today's powerful web browsers can do so much that we might tend to lose focus on
boundaries. For example, the presentation layer can use AJAX and naturally tends to
do some business logic processing with AJAX. However, it is always good practice to
stick to the principles.

Summary
In this chapter, we had a look at how we can use the MVC pattern as the basis for
separating concerns in the application and assign team members to each layer.

The presentation layer, or the view, is the layer that is most likely to change over
time. The business logic layer can also change over time, but not as frequently as
the presentation layer. Separating concerns helps us deal with system changes, as
the system evolves.

When assigning team members to each layer, and each aspect within a layer, you
need to take the personal skills and preferences into account, to ensure team success.

Adhering to the MVC principles will ensure that we can achieve system
integration without any major surprises. As long as the model, view, or controller
implementations do not cross their boundaries, we can ensure that we have loose
coupling in the system, and therefore ensure that we can put them together to get
the whole system working seamlessly.

In the next chapter, we will further dive into team allocation concepts and explore
key success factors for a PHP software project team.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Dealing with Complexity
The MVC pattern helps us cope with the complexity of software systems. Separating
concerns based on presentation, business logic, and data makes it easier for us to
focus on the specific areas of the software application that we are implementing.

We can design the system adhering to the principles as overtime, when we move
deep into the implementation, and when we are busy with the PHP code, the chances
of us drifting away from the original design and getting stuck in implementation
detail is high. Therefore, rather than trying to implement everything manually from
scratch, we should seek the help of tools and frameworks to help us stay on the
course, from design to implementation and deployment. Frameworks exist to relieve
the programmer so that he can concentrate on project-specific elements like business
logic. Therefore, the developers can stay in course with respect to the project, rather
than having to bother with technical details that a framework can help with.

In this chapter, we will be covering areas, such as:

• How frameworks simplify the complexity of a project
• Expectations from PHP frameworks
• How to achieve team success with PHP frameworks
• Leading PHP framework examples
• Keeping it all simple with the help of frameworks

www.it-ebooks.info

http://www.it-ebooks.info/

Dealing with Complexity

[46]

Frameworks to simplify complexity
One approach of implementing the MVC pattern is to make sure we identify the
PHP classes that fall into each aspect out of the model-view-controller, and then
implement each class, ensuring that we do not cross the boundaries. None of the
PHP classes should cross over from their respective domains of presentation, business
logic processing, and data access. We should stick to well-defined interfaces, when
communicating across these layers. The interfacing between the presentation,
data, and control layers of the application needs to be defined using proper API
documentation. This will help the developers working on each layer to know what
to do when it comes to talking to other layers. It is technically possible to do this on
our own, when we implement our software system's design using PHP, but needless
to say, this requires a considerable amount of engineering effort as well as strict
discipline. This approach is also very much error-prone, requiring a considerable
amount of time and effort for troubleshooting.

The good news is that over the years, PHP programmers have been dealing with the
same problems that I mentioned earlier and have collected their efforts into readily
available PHP frameworks. There are plenty of PHP frameworks that support the
MVC pattern out of the box.

A software framework provides generic functionality that can be
selectively overridden or specialized by user code providing specific
functionality. Frameworks provide reusable abstractions of code wrapped
in a well-defined API. The overall program's flow of control is dictated
by the framework, thereby allowing the developer to focus on domain
specific aspects of the software application.

How can frameworks help?
First and foremost, the frameworks simplify the task of dealing with software
application complexity. In the first chapter, we discussed how an application grows
complex over time, as the application evolves to deal with ever-changing real world
requirements. Therefore, the project team would benefit, if they could, from finding
a means of dealing with complexity.

The task of adhering to the pattern while implementing the software is a key
challenge faced by the software team. Software frameworks simplify this by means
of providing a project skeleton. A framework provides us with clear cut separation
of the three layers of MVC, so that we will not fall back to crossing the boundaries
in our implementation. The framework will also provide us with the interfacing
between the three layers, so that we will have little to worry about when integrating
the presentation to the business layer and to the data access layer.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[47]

When we make use of a framework to implement MVC, the framework will ensure
that we will adhere to the design patterns principle on our behalf. We cannot rule
out the wrong doing, simply because we are using a framework. However, it makes
it difficult to do the incorrect things and makes doing the right thing easier for the
team members. The framework in use will ensure that we do not deviate from the
correct design. For example, we will not have room to write some PHP code that
accesses the database within the controller. Even if we do, we will be able to easily
identify that we are doing something wrong, because the framework skeleton will
remind us of the correct use of the design pattern.

The preceding screenshot shows the Zend Framework's project skeleton for MVC,
separating the MVC concerns into different folders.

As the framework guards against deviation from design principles, the use of a
framework saves a lot of time. The PHP project team will save the greatest amount
of time by not having to worry about integration pains. This is because a framework
will ensure the seamless integration of the three layers. Making sure that we do not
deviate from the original design also saves a lot of time, because there will not be any
additional time spent on syncing up the design with the implementation. Deviating
from the intended design causes us to rework. This not only applies to PHP projects,
but it also applies to any software project in general. If we cross the boundaries
by mixing up presentation and business logic, when it comes to changing the
system in the future, in order to facilitate evolution, we would need to spend some
considerable time, re-factoring the PHP code to separate the concerns. By using a
framework, we can cut down on the need for future refactoring a great deal and just
focus on the changes required to improve the system. Therefore, using a framework
saves both, time and money.

www.it-ebooks.info

http://www.it-ebooks.info/

Dealing with Complexity

[48]

Frameworks handle complexity on our behalf. The MVC frameworks worry about
how to connect to the database and take care of how to manage presentation
templates and style sheets. The framework will worry about how to pull data from
the data layer and make the data available for the business logic layer. If we were
to implement all of these on our own, as PHP developers, we would need to deal
with all these complexities. But thanks to all of those developers who implemented
the frameworks, we can be relieved from the framework complexities and focus
on our data processing, business logic, and how to present information to the user.
Therefore, the software project team can focus on the project success and the domain
specific aspects of the PHP software project.

There are a few negative sides of using a framework as well. When using a framework,
we might not have expert knowledge about the intents of the framework, and
therefore, we are merely using it. When we are hit by bugs, it will take time to figure
out whether a bug is really in our code or in the framework being used. It will be hard
to find solutions to the bugs in the framework itself.

If we are to do fine grained, high performing operations with a framework, we
might need to get a deep knowledge to flex the framework into doing what we want.
Tuning a framework for performance would be a challenging task, without a great
depth of knowledge on the framework.

We might also need to think about licensing problems. With the fine tuning and
customization we do with some open source licenses, will need to be contributed
back (the business people and company lawyers would not like that idea).

The framework we pick might be either oversized or undersized for the project. We
might only use a fraction of the feature set and have a bloated framework on top. On
the other hand, we could have a small well-performing frameset that is only capable
of doing half of what we need, like different DB interaction and well-performing
URL rewriting.

As mentioned in the previous chapter, when implementing a software system, the
software team developers need to focus on business logic. This is important to get the
system designed and implemented right to solve the problem at hand. If developers
are to worry about both the system specific aspect, as well as generic framework
aspects, the chances of their focus being deviated are high. Hence, we are better off
getting the team to focus on system specific aspects.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[49]

Expectations from frameworks
Now that we have discussed how frameworks can help with a PHP project, the
next question is what features and capabilities should we look for when choosing a
framework. Here are some of the important aspects that we should expect a given
PHP framework to support:

• Simple to use
• Facilitates application performance
• Ensures security
• Separates HTML from PHP
• AJAX support
• No restrictions in terms of the PHP constructs that can be used and

not having to use custom syntaxes
• An API provided to deal with the framework (object-oriented

versus functional)
• Encourages code quality
• Enforces best practices
• Ability to configure
• Supports internationalization
• Availability of comprehensive documentation
• Active community around the framework
• Availability of commercial support
• Friendly license that encourage business use
• No vendor locking
• Availability with web hosting solutions

Based on the nature of the project, not all aspects, but only a subset of the preceding
aspects, would be sufficient for our project at hand. For example, internationalization
is desired only if we plan to port our application to support multiple languages.
But some other aspects, such as simplicity and security, are always desirable. An
explanation on each expected aspect of a framework follows. The implication of each
aspect on the PHP team project is highlighted in the following discussion.

www.it-ebooks.info

http://www.it-ebooks.info/

Dealing with Complexity

[50]

Simplicity
The PHP framework that we pick for our project needs to facilitate a clean and
simple design. The framework should help us keep it simple, rather than making
it complex. After all, that is the entire point of using a framework. Though we can
assume that frameworks out there would help us simplify the software system that
we are to develop, it is always good practice to confirm that it really does. If the steps
to get something done with the framework are overly complex, then the project team
would not benefit from the use of the framework.

In general, all frameworks provide PHP developers with simplicity, but some
frameworks are ahead of the others. Simplicity is always related to the original
intent the framework was developed for. Every framework will be simple for those
who developed it, because they developed it with certain use cases in mind. If we
could stick to those uses, it will be simple. So we need to consciously evaluate the
simplicity aspect against our project requirements when making our choice.

The PHP project team will benefit from the simplicity of the framework when it
comes to understanding each other's work. It is always good for each team member
to have an overall idea about the framework. If the framework is too complicated, it
will be challenging for everyone to have the same level of understanding, which will
lead towards complications in communication, and sometimes can even be the cause
of conflicts among team members.

Size of the framework
One thing that we need to note is that the framework is only part of the solution.
We need to implement our own solution based on the framework. If the framework
is too bulky, that itself will make our software heavy weight.

It is always desirable for the framework we choose for our project to have a small
footprint. A smaller footprint with respect to the amount of memory required, as
well as the amount of disk space required is desirable. The number of files has a
direct impact on the disk space and governs the file system performance. The size
of the files determines the memory required to keep them in memory, as well as the
cache memory to handle the file in memory. The number of PHP classes also has an
impact on the logical performance. All of these factors contribute to the footprint
of the framework. Some frameworks are feature rich, whereas some only have the
basics. Based on the nature of our project, we need to evaluate if we are going to use
all of the features of the framework that we have chosen. The greater the number of
features, the bulkier the framework is going to be.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[51]

As a rough measure, you can consider the ratio between the lines of code that we
have implemented as part of the project, versus the number of lines of code that is
in the framework that we are using. If the PHP framework is much larger than the
actual code that we are going to implement as part of the project, maybe we should
consider using a smaller framework.

We should always have an idea on the size of the PHP framework that we are using
for our project.

Performance
Performance is desirable for any software application. While frameworks provide
us with abstract interfaces to help us build our application specific logic, the
abstraction layers, if not designed with performance in mind, or if not optimized
for performance, can be the cause of system performance bottlenecks. The size of
the frameworks is somewhat related to performance. However, size alone does not
govern performance.

Similar to the way that the PHP frameworks build on the years of experience with
layered web applications, they also improve on performance over time. However,
when you evaluate alternatives, when looking for a PHP framework for your
project, you need to note that some frameworks will perform better than others. If
performance is critical to the nature of our software project, we may need to pay
greater attention to performance numbers. The most used criteria for measuring
performance is the requests per second measure. Since the end users are working
with the presentation layer, you might want to pick a few use cases of your system
and load the system with a bunch of requests covering those use cases and evaluate
how the framework is performing. This evaluation can be part of the initial Proof of
Concept (POC) implementation that we might do to evaluate the technical feasibility
study of the framework.

Security
Like performance, security is another aspect that any software application needs to
take into account. On one hand, the framework itself needs to be secure, guarding
against the common security vulnerabilities and protecting against insecure practices,
such as allowing the execution of malicious scripts.

On the other hand, the framework helps us write secure code, by providing
facilities, such as input validation through filters and a data firewall to guard against
SQL injections. We can consciously prevent security vulnerabilities when we are
implementing our PHP code. However, the PHP framework being used can prevent
us from leaving security holes in our software system.

www.it-ebooks.info

http://www.it-ebooks.info/

Dealing with Complexity

[52]

We need to make sure that team members understand the security features as well
as security vulnerabilities, if any, of the PHP framework in use. Also, all of the
team members need to be educated on how to use the required security features
supported by the framework. Security is one of the areas that we cannot make
any assumptions about, and needs to be more precise in terms of instructing and
educating team members in this area.

Separate HTML from PHP
When implementing the view, we need to use both PHP as well as HTML. PHP MVC
frameworks provide the ability to work with views. However, when maintaining
the presentation layer, it is desirable to keep the PHP code in the views extremely
simple, and to be able to isolate HTML from PHP logic very easily.

Various frameworks have different strategies when it comes to separating PHP
from HTML elements. We need to evaluate these strategies and ensure that the
PHP project team can easily work with the PHP and HTML isolation.

AJAX support
Like the HTML and PHP separation, AJAX support is also related to the presentation
layer (the view). While it is always possible to use third party libraries for our AJAX
usage, it is welcome if the framework can also support AJAX out of the box. That
will ensure that the AJAX usage is in sync with the rest of the presentation layer
features that come with the framework, and also ensures that we do not go out of
the boundaries of the view when using AJAX.

For the project team, it would be an added advantage as the PHP framework will
become a one stop shop for the tools that they need to build as comprehensive,
dynamic, presentation layer for the application being built. Needing to use a third
party library for AJAX on top of the framework, would add the trouble of having to
ensure the integration of those libraries with the framework is seamless on our part.

No restrictions
Ideally, the framework that we choose to use for the PHP project should not
require us to adhere to restrictive coding rules, especially those that force us to use
framework specific markups. The team members are better off if they are not forced
to learn a templating language that is specific to a framework.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[53]

Though it is highly unlikely that you would want to switch the framework to
another in the middle of the project, you always have the chance to use a different
PHP framework for the next project. Therefore, it would be a waste of time if the
team members had to learn custom coding rules for one framework, and had to
throw away that know-how soon after the project finishes. It is always welcome to
use generic HTML, AJAX, and, most importantly, PHP syntaxes when implementing
the software application.

It saves time, in terms of getting up to speed with the project, if there are no
restrictions or custom rules required by the framework, because the project team
can make use of the PHP knowledge, which they already have, to get going with
the project right from the beginning. Otherwise, they would need to spend a
considerable amount of time studying the framework before the start of the project.

Object-oriented versus functional
Some frameworks supports object-oriented APIs, while others provide functional
APIs. Most of the PHP projects these days use object-oriented designs. Therefore,
if the project wants to use an object-oriented implementation and the framework
does not support it, it might lead to problems. Project team members especially
will find it difficult to sync up the use of the framework and custom code that they
are implementing if the framework supports a different style of programming to
that used by the custom logic. Therefore, based on the fact that we are either using
object-oriented programming or functional programming, we need to consider the
programming styles supported by the PHP framework that we are going to use.

We should make sure that all of the team members feel comfortable with the API
provided by the PHP framework, and that they are familiar with the style of the
API. For the sake of maintaining the project in the long run, we are better off using a
framework that supports an object-oriented programming style, as object orientation
is supposed to help with some maintenance headaches.

Code quality of the project
Code quality is critical to any software system that is developed by a team of people.
Not only those who have written a given piece of code, but also others in the project
team need to be able to look into that piece of code to understand what is it doing.

When using a framework, the code quality of the programmers can be improved and
sometimes enforced by the framework itself. For example, the framework can avoid
layers and other complexities to make the code easier to audit. The framework can
help the programmers to minimize code and help team members avoid repeating
their work.

www.it-ebooks.info

http://www.it-ebooks.info/

Dealing with Complexity

[54]

However, it is not possible for the framework to enforce something like a coding
standard for the code that we implement on top of the framework. Therefore, we
need to keep in mind, that it is the responsibility of the team to adhere to a coding
standard. It is always a good practice to have a coding standard defined for the
project so that the project team can follow that. Also, it is always a good idea to sync
up the coding standard with the framework (for example, if there are situations that
the framework can auto generate code).

Coding standards are a set of guidelines for a specific programming
language that recommend programming style, practices, and methods
for each aspect of a piece program written in this language. These
conventions usually cover file organization, indentation, comments,
declarations, statements, white space, and naming conventions.
For example: Drupal Coding Standards (http://drupal.org/
coding-standards)

Enforce best practices
The framework that we use can help enforce best practices that we want our PHP
project team to follow. Code quality is about writing neat code. A good practice
is to use programming constructs that ensure the ideal use of technology, when
implementing various technical aspects of the software project.

A best practice is a technique, method, process, or activity that is more
effective at delivering a particular outcome than any other technique,
method, or process. The key idea is that with proper processes, checks,
and testing, a desired outcome can be delivered with fewer problems and
unforeseen complications.

For example, security, authentication, database access, and session handling are
common technical aspects that we need to worry about in any software project.
There are various patterns and practices that we can leverage when dealing with
these technicalities. PHP frameworks can provide us with programming constructs
to help us better deal with these technical aspects, without compromising the quality
of the software that we are implementing.

For example, we can devise our own mechanisms to deal with application state.
However, the PHP framework that we use can help us deal with application state,
with the help of managed sessions. Rather than reinventing the wheel, we can benefit
from the features provided by the framework. And, more importantly, when using
the session feature of the framework, it will enforce us to adhere to best practices
with respect to management of sessions. For example, the sessions need to expire
after some time, and the framework would handle that for us.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[55]

Another example is the use of connection pools when accessing databases. The
framework can manage the connection pool on our behalf, and we will be using
the best practice of reusing connections.

Like with the case of sessions and connection pools, there can be many best practices
that will be enforced by the PHP framework that we are going to use for our project.
We need to educate the project team members of those best practices, so they always
look to benefit from them. And, more importantly, when they are educated of those
best practices, they will reuse that knowledge on future projects as well.

Configuration needs
PHP frameworks often provide configuration options. Some configuration elements
are common to the entire framework (for example, where the required include files
are located). Some other configuration elements are application specific (for example,
database connection parameters for the application).

While configuration abstracts out common concerns, too many configuration needs
can also lead to complications. Therefore, the PHP frameworks nowadays try to
achieve zero or no configuration.

Convention over Configuration is a software design paradigm, which
seeks to decrease the number of decisions that developers need to make,
gaining simplicity, but without sacrificing flexibility. This paradigm is
also known as Coding by Convention. The framework most strongly
associated with the paradigm is Ruby (a programming language) on Rails
(http://www.rubyonrails.org/), which popularized the concept.

We need to verify if the framework needs only simple configuration that can
be achieved with a few simple steps and with, at most, one configuration file.
If it requires more than one configuration file, it always leads to maintenance
headaches—especially in an environment where a team of people work on the
project. Also, you need to make sure in the development phase that if one member
changes the configurations with respect to the PHP framework in use, then the
others get to know of those changes as soon as possible. Otherwise, if the changes
to the configuration affect the entire system, but other team members do not get to
know the changes, others will be testing their implementations against an expired
configuration. Therefore, changes to the configurations need to be dealt with care,
like the way you might deal with major API changes that affect the entire system.
For example, either the changes need to be communicated to everyone in the team
through email, or configuration files need to be shared with a source control system.

www.it-ebooks.info

http://www.it-ebooks.info/

Dealing with Complexity

[56]

Internationalization
If we want to support more than one human language with our application, we
need to make sure that we do not hard code anything in a particular language (for
example, in English) in the presentation layer. In case we want to internationalize the
application, the usual way of supporting that is to use some key in the presentation
layer, and provide the mapping to that key, in a language specific property file. Form
headings, labels, alert messages, and so on will all have a key used in the property
file, instead of real wording, and the framework will take care of picking the correct
mapping and rendering the expected language when sending the response to web
browser requests.

When we are choosing a framework for our PHP project, if internationalization is a
project requirement, it would be ideal for the framework to support internationalization
as an inherent feature. If the framework does not support internationalization, we will
be able to use another third party library to get the job done.

When we are using internationalization features of the framework, we need to train
the team members working on the project on how to adhere to internationalization
requirements. In particular, the regular mode of programming is to have all of the
text in PHP or HTML files. Therefore, the sub-team working on the presentation
layer needs to be disciplined in use of the property files for text, and replace text
in PHP or HTML files with respective keys. Another thing to note is that it is not
only the presentation layer sub-team who should be aware of the expectations for
internationalization. Sometimes, the content presented through the presentation
layer comes from the backend, the business logic layer. So if internationalization is
in use, those who work on the business layer need to be aware of it too, so that they
can apply internationalization rules when providing content to the front end.

When we are programming, we can use one property file, and use the language that
we are familiar with, rather than worrying about maintaining multiple language
mapping property files. Once the system is implemented, we can use the single
property file and translate that to the other languages.

Documentation
Often, we get too excited about the feature set provided by a PHP framework
and tend to overlook the need for documentation. We do this until we hit a road
block with the project, where we might need to go through the framework's
code to understand how to do something. Almost all frameworks will come with
documentation. However, some frameworks will stand out from others, in that they
provide clear, thorough, and comprehensive documentation.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[57]

Rather than taking documentation for granted, we need to make it a point to look
into the documentation of the framework, and determine if that covers the breadth
of features, in depth, in the documentation. Sometimes, the framework will be
designed in such a manner that experienced programmers could use their intuition
to understand the API and get the job done. However, not all members in your team
will be that experienced. Someone who runs into a problem when implementing a
niche feature of the project should have somewhere to look, and documentation is
the best resort. Therefore, we need to make sure that the documentation does really
help, rather than only touch the surface.

One of the pitfalls when evaluating documentation is to mix up the availability of
a large number of samples to the equivalent of good documentation. Samples are
always helpful and welcome. However, for the samples to become really useful,
there should be accompanying documentation. Ideally, each sample should have
associated documentation.

We should encourage the team members to look into documentation, especially at
the beginning of the project, if they are not familiar with the framework to be used
for the PHP project. A framework's documentation needs to be a key part of the
project knowledge base.

Community
Documentation, when necessary, is nothing next to lively human interactions. Also,
it is not possible to document all possible scenarios supported by a framework.
There can be situations where we need to get something done with the framework,
but the application that we are developing using the PHP framework is so unique,
that few people have even tried to do the same with the framework before. In
such a situation, it would be a luxury to get someone with better expertise on the
framework to help you.

More often than not, the framework of our choice will be an open source PHP
framework. Given that the core PHP engine itself is open source, it does not
make sense to use a proprietary framework based on PHP as the base of our PHP
application. Open source projects are driven by communities. There will be a
developer community, as well as one or more user communities associated with
an open source PHP framework. The advantage of having a strong community
behind the PHP framework of our choice is that we will be able to get help for the
problems that we face with the framework. Maybe they have already seen the same
problem, and figured out a workaround or found a solution. Maybe they have better
knowledge and experience with the framework than us, allowing them to shed some
light as to how to proceed with the framework in search of a solution to the problem
that we have faced.

www.it-ebooks.info

http://www.it-ebooks.info/

Dealing with Complexity

[58]

The communities behind a PHP framework can use various channels, such as email
lists, online forums, and even IRC channels.

Some communities are really active, where you might get your questions answered
within hours. Some communities can be really friendly, willing to help you get over
the problems, and even tolerate seemingly silly questions on the part of the dummy
users. However, some communities might not be that active, and sometimes, even
though they are active, they might not be that friendly towards newbies. Therefore,
when you select a framework for your project, it is better to consider the possibility
of your team members getting some help in case they run into trouble with the
communities. Look into the history of the forums, and mailing list archives of the
PHP framework that will be chosen for the project, to evaluate the activeness as well
as the friendliness of the community.

The other important aspect of an active community behind a PHP framework is
that someone might have faced the kind of question that you have faced. There is
a chance that someone has already asked the question that you wanted to ask from
the community, and someone has already answered that question. In other words,
we can treat the forum history and mailing list archive of the framework to be an
informal documentation on the framework. We can ask the project team members to
dig into the community archives in search of answers to the problems that they face.
However, this is only feasible if there is a considerable amount of history of archived
community communications. Therefore, it would be a good idea to include this as
one of the evaluation criteria when selecting a PHP framework for your project.

Commercial support
As it was mentioned while discussing the community aspect, we would hardly
choose a PHP framework that is non-open source for our PHP project. However,
there can be situations where we might run into bugs in the framework itself, other
than bugs on our own code. In such situations, we might be able to depend on the
user and developer communities around the framework, to help us to overcome the
problem. However, this help comes purely on a voluntary basis. In other words, no
one in any of the communities is liable to provide a solution to a potential bug that
we might find in the framework. And even if they did, we cannot guarantee that
we might be able to find a solution within the time frame that we desire, in case we
are up against a tight deadline in terms of our project. The solution for this sort of
uncertainty is to look for commercial support offered around the PHP framework
that we are using.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[59]

Commercial support provides us with insurance against potential show-stoppers
when we are using a framework. Commercial support can come in many forms;
training, development support, and production support. Development support is
where the organization providing commercial support provides us with support
for the problems that we hit while developing our project. Even though we might
already have a training package, the chances are good that the training will not cover
the unique situations that we come across while working on our project. Therefore,
while working on our project, we might want to seek help from the experts on the
framework that we are using. So, development support is to get help as and when
needed, while developing the project using the framework. Production support is the
insurance package that we purchase against potential showstoppers that we hit once
we deploy the software that we have developed. If the bug that breaks the live system
happens to be one in the framework, we would rather get the experts to fix that
rather than trying to handle them on our own. This is because of the business impact
it will have on the live system is down for a prolonged time. Out of those options,
production support might be the most important as training and development
support would be redundant, based on the expertise of our team members.

You need to remember that you should look for commercial support only if it is
absolutely necessary. Most small to medium projects would not have a big enough
budget to go for a third party support model. If your project is large scale and the
application is mission critical in terms of the business value that the application
yields to the organization, it will be beneficial to have some insurance in the form
of commercial support. In case the community behind the framework is active and
regularly releases the framework, which minimizes the need for commercial support
even if there are bugs, there is a chance that they would get fixed soon. However,
unless we ourselves participate in the development aspects of the framework, we
cannot guarantee that the bugs would be fixed in the next release of the framework.

Also, remember that even though the framework will be an open source product, it
would not be a good idea to customize it on our own. This is because when the next
release comes up, we would have trouble integrating our local custom changes to the
framework's new code. Therefore, if we have done bug fixes to the framework on our
own, it would be a good idea to donate them back to the development community
of the framework. This way, those fixes will be available in the next release and we
would not have trouble upgrading to the next release. The importance of upgrading
to a newer release is that there would be many bug fixes from the previous release
to the new release. And the good thing about donating the fixes that we do is that
we would be giving something back in gratitude to all of the hard work that the
developer community has done while implementing the framework. It would build
a good relationship between our project team and the framework's development and
user communities.

www.it-ebooks.info

http://www.it-ebooks.info/

Dealing with Complexity

[60]

If we are looking to help fix a bug that we have found, a less costly model compared
to full-scale commercial production support is the development sponsorship. It
means that we pay an individual or group just to fix the particular bugs that we
desperately want fixed in the framework. It saves time on our part, as we are not
spending any of our team members' time to fix framework bugs. Also, we can get
experts who know how to fix the framework, rather than wasting our team members'
time to learn how to fix the framework. They would be able to get the fix quickly.

Even if you do not plan to purchase commercial support due to budgetary
constraints, it would be useful to pick a PHP framework that provides commercial
support in some form. This leaves you the option of using paid support, in case your
project team runs into a crisis situation in the future. A framework with commercial
support options should score more marks over those that do not offer that option,
when we are evaluating our alternatives.

License
Open source PHP frameworks will come with some form of an open source license.
We must pay attention to the license of the PHP framework that we are going to use
for our project, because the kind of license has some business implications. Not only
should the organization that we work for feel comfortable with the license, but also
the clients who are going to use the software that we develop will be interested in
the license.

Determining whether the license suits the software project at hand is a very subjective
matter. More often than not, it is not the software project team, but rather the company
lawyers who need to decide on the licensing matters. Therefore, it would be advisable
to consult relevant parties on the kind of license that the framework uses, before the
start of the project. If we happen to find out that the license does not suit the business
objectives of the project, half way down the line in project life cycle, we might need to
throw away all of the hard technical work that we have done. Therefore, we should
make it a point to look into the license as one of the first evaluation criteria of the PHP
framework that we are going to use.

Some organizations have well-defined guidelines on getting a license approved.
Sometimes there can be a subset of licenses approved already by the organization to
be used in projects. If we have already used the framework for one project, we might
not be able to assume that the same framework could be used for the next project, as
the client of the new project might have different aspirations when it comes to legal
matters. Therefore, always make sure to double-check the license, before the start of
the project.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[61]

Sometimes, there could be concerns over the intellectual property (IP) implications.
The main question to be asked here is, 'who developed this software framework?'.
Some PHP frameworks are developed by a few individuals and some are by larger
teams. We might need to look into the copyright claims, and verify that there aren't
any IP violations.

Vendor locking
Sometimes, a framework could seem to have great set of features, but only part of
that would be available as open source. If we happen to start the project using a
particular framework, and somewhere down the line when we feel the need of a
particular feature, but that is only available without paid support, we would have
no other option but to pay for it. However, the same feature would be available with
another framework for free. Now if we want to switch from the first framework,
to this other framework that we found to be more liberal, we should be able to do
that. If the first framework's coding and configuration style prevented us doing the
migration easily, and we had to continue using the same framework, that is vendor
locking. Now we need to keep on using the same framework and adhere to the
terms of framework, whether we like it or not. We should try and avoid vendor locks
at all costs.

It is a fact that we cannot switch from one framework to another seamlessly, without
doing changes. However, we should be able to get our custom code migrated,
with comparatively little effort, if the need arises. These kinds of unpleasant and
complicated changes can be avoided through proper evaluation of the framework at
the start of the project. We should look for possible vendor locking opportunities in a
PHP framework and try and avoid using such frameworks for our PHP project.

Availability with hosting
Most PHP projects, once developed and completed, will be required to be deployed
with a web hosting service provider. Standard hosting accounts run a variety of PHP
versions and configurations. The framework that we choose as the base of our PHP
project should be compatible with those that the standard hosting accounts provide.

Some PHP frameworks will be made available by the web hosting companies
themselves, reducing the hassle of installing and configuring those frameworks.
If the framework we chose is not readily available from the hosting company that
we want, we should be able to install and configure the framework easily.

www.it-ebooks.info

http://www.it-ebooks.info/

Dealing with Complexity

[62]

Although the chances that will we switch between frameworks over time for a
project is minimal, the chances that we might need to change our web hosting
provider over time is greater. Therefore, we should consider the availability and
support of the framework with multiple web hosting companies, when we choose
a framework.

Some more points to ponder
In addition to the above facts that need to be taken into account when evaluating
PHP frameworks, here are some more points that will be helpful to evaluate the
usefulness of the PHP framework to be used for the PHP project.

The PHP framework should support multiple databases. Often, we pick a database
management system for the project and stick with it. However, due to various
constraints such as security, performance, and license, we might want to switch
between database management systems. So it would be useful for the PHP
framework to support multiple databases.

Support for Object Relational Mapping (ORM) by the PHP framework is also going
to be very useful when it comes to the style of development. The PHP developers will
benefit a great deal by not having to deal with low level SQL, but with objects using
ORM, which is natural to programming. This also increases developer productivity.

Support for templates is a welcome feature by the framework. We discussed how
the templates help in the previous chapter. The kind of template support that the
PHP framework provides will have a great impact on the way we deal with our
presentation layer.

Support for modules, including authentication modules, is another handy feature
to have in the PHP framework. In the previous chapter, we discussed the need for
having a unified model for cross-cutting concerns such as security. And we can rely
on the PHP framework to help us with these cross-cutting concerns. For example,
the authentication module of the PHP framework can ensure that we address
authentication in a consistent manner throughout our application.

Team success with frameworks
In the above sections, we looked in detail at each desired aspect of a PHP framework.
For a team to be successful with a framework, they should feel comfortable with the
framework and they should consider the framework to help the teamwork, rather
than hinder their team effort. Sometimes, to ensure that the team has a positive
attitude towards the PHP framework being used for the project, all that is required
is to set a positive tone among team members right at the beginning of the project.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[63]

Different team members that have worked with various PHP frameworks might
have developed various feelings and attitudes towards the framework that they
have used. Some of these feelings might be subjective rather than objective, and
these feelings could lead to political battles among team members to prove that one
framework is better than the other. This will damage the team unity, as well as we
might not be able to achieve the project goals, if members try to keep on proving
their points. Therefore, we might need to do a proper objective evaluation of the
alternative frameworks available at the beginning of the project, and educate all team
members on the objective rationales for choosing the framework to be used for the
project. Once the choice is made, the team better uses it in completion, rather than
keep on arguing on the possible alternatives.

One other key aspect is that people take pride in what they do. This is very important
in terms of a software team. Each member should feel that they do something that
makes them valuable over time. The experience that they gain and things that they
learn by working on a project, using some framework, should motivate them. If the
framework being used for the project is in wide use in the industry, the software
team might feel more comfortable working with that because they would have some
sense of job security. If we are using a framework that is not widely used in the
industry, team members might be concerned if it will be really useful to learn how
to use that, with respect to their future opportunities to use the same framework in
the future.

The current experience that various team members have on the framework being
used for the project can also come in handy for the success of the project. Those
members with experience can educate, guide, and help others in the team to make
better use of the framework. It is always a good idea to have some experts, or geeks,
with respect to the framework in use, as they can prevent the entire project from
hitting roadblocks and showstoppers.

As we discussed in the previous chapter, we can allocate team members based on
presentation, business, and data layers. We can also take into account the level of
experience that each team member has on the framework, when allocating team
members to various work items.

www.it-ebooks.info

http://www.it-ebooks.info/

Dealing with Complexity

[64]

It is also important to note that we need to educate the team on various aspects
with respect to the use of the framework. The usual approach is to assume that the
PHP project team will make good use of the project. However, it is not a good idea
to assume the proper use and expect great results. We need to first make sure that
we explicitly educate the developers in terms of the proper use of the framework,
and what we expect from the use of the framework. It is also important to highlight
various aspects as were discussed in the previous sections, based on the importance
of those aspects to the project we are working on. In addition to educating team
members, we should also monitor the use of framework by the team members and
evaluate results, to ensure that we are on right path, throughout the project. Regular
reviews will help us stay on course, throughout the project life cycle.

Technical feasibility study of the framework
We have discussed the various aspects that we wish to have and use in the PHP
framework for the project at hand. Most of these aspects have some elements that
need to be highlighted with respect to the project team. At the start of the project,
we should do a technical feasibility study, on the PHP framework to be used for
the project and the elements that have implications of the project team should also
be evaluated.

Sometimes, if we have already used the PHP framework for several projects already,
we might be inclined to skip the technical evaluation as we are already familiar with
the framework. However, no matter how familiar we are with the framework, we
should not skip the technical feasibility study for a new project. This is because every
time we get a new project, the technical and business requirements of that project are
unique and cannot be compared to any of the previous projects that we have already
completed. In fact, if the new project is identical to any of the projects that we have
done earlier, it would not be a new project as such. Therefore, if we are to succeed
with the new project, we need to do a technical feasibility against the framework
that we plan to use for the project and be confident about the technical fitness of that
framework for the project at hand.

People factor is an important element in the technical feasibility evaluation, but it
is often overlooked. It is critical that we consider the current experience of the team
members on the framework to be used if they would feel comfortable with the
style of programming offered by the framework. If we cannot align the technical
aspirations of the project team to the nature of the framework, we will face hardships
during project life cycle.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[65]

PHP Frameworks
Here is a list of a few leading PHP frameworks that you might consider evaluating
for your project.

Limb
URL: http://limb-project.com/

Open source with GNU LGPL license.

Limb is mostly aimed for rapid web application, prototyping, and development.
Limb is a library that consists of many reusable components distributed as packages.
This allows us to pick the components that we need and combine them with other
frameworks and libraries, such as ZendFramework, Symfony, PEAR, and so on.

It includes a package named macro, a powerful and highly customizable templating
system that uses user-defined macro tags for the presentation layer. The web_app
package provides a FrontController interface, which handles the controller
responsibilities of the MVC pattern. The package named dbal provides the database
abstraction layer, which currently supports MySql, PostreSQL, Oracle, and SQLite.

To help evaluate Limb in action, there is a Code Bits section where code samples,
as well as applications built on this framework, can be found.

phpDrone
URL: http://www.phpdrone.cvds.ro/

Open source with custom license.

phpDrone requires at least PHP5 or a higher version. The main features of
phpDrone are:

• An advanced templating system for presentation layer
• A controller module that will map the URL to methods inside your PHP

code, and handles controller responsibilities of MVC
• A set of widgets (for example, HTML form widget for easy handling of

HTML forms)

phpDrone has the latest documentation in the Docs section of their site.

www.it-ebooks.info

http://www.it-ebooks.info/

Dealing with Complexity

[66]

ZNF
URL: http://www.zeronotice.org/

Open source with GNU LGPL license.

The goal of ZNF is to provide a framework for building PHP5 enterprise web
applications. The core of the ZNF framework is a flexible control layer based on
standard technologies like PHP5 and XML. ZNF encourages application architectures
based on the Model 2 approach, a variation of the MVC design paradigm.

ZNF provides its own controller component. This controller component integrates
with other technologies to provide the model and the view.

For implementing the model, the data layer—ZNF—can interact with standard data
access technologies, like PEAR::MDB2 and PDO.

ATK
URL: http://www.atk-framework.com/

Open source with GNU LGPL license.

ATK is a framework targeted at business applications. It promises very small
amounts of code, when building applications.

The philosophy behind ATK is to archive minimal code, eliminate code duplication,
simplicity, and reuse. With this view, the key idea is to ensure that the only code
the user writes is business logic. There is a comprehensive demonstration to help
us understand this concept. Also note that ATK claims that it is not a component
framework. Therefore, the approach is slightly different form traditional frameworks.

Akelos
URL: http://www.akelos.org/

Open source with GNU LGPL license.

The Akelos PHP Framework is an MVC framework. It provides comprehensive
support to build applications based on MVC design pattern.

Akelos provides AJAX support for views. The controller handles requests and
responses on behalf of the user. It provides a simple mapping between models
and the databases.

Akelos also has internationalization support.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[67]

Akelos claims that it can run applications on most shared hosting service providers
since it only requires PHP to be available on the server.

CakePHP
URL: http://www.cakephp.org/

Open source with MIT license.

CakePHP is a rapid development framework for PHP. It has the provision to use
MVC within the convention over configuration paradigm, and eliminates the need
for configuration requirements. CakePHP also promises less code.

CakePHP defines a comprehensive set of best practices covering security,
authentication, and session handling.

The framework provides an object-oriented API for the programmers to work with.

CodeIgniter
URL: http://codeigniter.com/

Open source with custom license.

CodeIgniter is a PHP framework with a very small footprint. Because of the small
footprint, good performance can also be expected. CodeIgniter also promises
wide support for shared hosting accounts. One of the most interesting features of
CodeIgniter is that it does not require a custom templating language.

Thorough documentation is available.

Zend Framework
URL: http://framework.zend.com/

Open source with New BSD license.

Zend Framework is based on simplicity, object-oriented best practices and a
rigorously tested agile code base. Zend Framework is focused on building more
secure, reliable, and modern Web 2.0 applications.

Zend Framework has comprehensive MVC support, with clear separation between
the presentation, business logic, and data access layers. It also has support for AJAX
for the presentation layer. It also has support for web services and data syndication
formats. You can use those as an alternative to your database driven data model.

www.it-ebooks.info

http://www.it-ebooks.info/

Dealing with Complexity

[68]

In addition to the MVC support, Zend Framework comes with a comprehensive
object-oriented PHP 5 class library. It has paid proper attention to best practices
like design patterns, unit testing, and loose coupling in the design of the framework
and the API.

PHP Work
URL: http://www.phpwork.org/

Open source with MIT license.

PHP Work too is a MVC framework. It tries to closely follow architecture similar to
ASP.NET. It provides clear separation between presentation logic and business logic
through its approach for web page organizing.

It makes extensive use of object-oriented concepts.

Symfony
URL: http://www.symfony-project.org/

Open source with custom license.

Symfony is a comprehensive framework based on PHP5. It provides an architecture,
components, and tools, for developers to build complex web applications. It makes
use of the best practices of web development by integrating some third-party
libraries.

Symfony is one of the most popular PHP5 frameworks around. Therefore, there is
a large community behind it. This makes it very easy to find help, documentation,
and plugins.

You can find a comprehensive comparison of the PHP frameworks and a summary
table comparing some leading frameworks at http://www.phpframeworks.com/. In
the above section, the PHP frameworks discussed were picked based on the level of
MVC support they provide. While almost any PHP framework supports MVC, each
framework has its own approach.

KISS—beyond frameworks
Using a PHP framework, we can delegate the complexity of dealing with the flow of
control. In the section above, we discussed in detail what to look for when selecting
a framework, what to expect out of a framework, and how we should organize our
team to get the maximum use out of the framework.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[69]

Most of the concepts we discussed with respect to the PHP frameworks can be
generalized to any tool or library that we plan to use for our PHP project. For
example, we always need to look into the documentation, samples, and community
support of any piece of software that we are going to use for the project, because
the team members working on the project need technical support. Based on the
budget available, the project management might even decide to look for commercial
support. Also, the company lawyers are interested in the kind of license under which
the libraries that we are going to use.

Beyond frameworks
We know for sure that frameworks will help us simplify our projects. However,
frameworks alone cannot help. In other words, it is not only about frameworks.
Frameworks will simplify, but we need to KISS.

KISS is an acronym for Keep it Short and Simple, and sometimes it
is also used to mean a more popular term Keep it Simple, Stupid. KISS
states that design simplicity should be a key goal and that unnecessary
complexity should be avoided.

When designing the software application, we cannot leave any responsibility to
the framework or any other tools that we might be using, when it comes to the
quality of the software design. Most people are good at complex designs, but often
overlook the need for maintenance. It is the logic that we implement on top of the
framework, the application specific logic, that is most important. We need to make
that implementation simple to manage complexity.

The thumb rule that we can follow, when it comes to the KISS principle, is to do
the least possible to meet the requirements. In other words, we need to avoid over
design. One way of achieving this is to encourage and reward simple design over
complex solutions done by team members. Our application logic that we implement
on top of the PHP framework in use needs to be as simple and clean as PHP.

People are complex
People are the most complex element in a software project. When we talk about a
team, we are basically talking about a set of people working as a team.

www.it-ebooks.info

http://www.it-ebooks.info/

Dealing with Complexity

[70]

Usually, the team members are motivated, even more, by exploring and learning
new things. This is especially true about software professionals. They will be less
motivated to fix bugs and write test cases, than to implement some new logic. We
need to manage those traits of individuals to get the project done right. From a
project perspective, not only new logic, but also the bug fixes and test cases matter.
Therefore, we need to balance out the task assignments and responsibilities.

Avoid NIH
Not Invented Here (NIH) is a term used to describe corporate or institutional culture
that avoids using or buying already existing products, research, or knowledge
because of its different origins. Sometimes, some team members will not want to use
a framework feature, tool, or library, due to this mindset.

It is important to get team members to reuse everything around, at all costs. This will
solve the problems with writing too much new code, requiring rigorous testing, and
sometimes leading to overly complicated software. We should not only try and reuse
the features offered by the PHP framework that we are using, but also, we need to
reuse the code that our own team members have implemented.

Innovation
Many have the misconception that innovation is about coming up with something,
out of the blue. However, all great innovations around us were built by just
improving what was already around. This phenomenon applies to software projects
as well. The entire point of using a PHP framework is to make sure that we are not
trying to reinvent the wheel. But at the same time, based on the framework that we
are going to use, there is so much room to innovate.

The clients and the stakeholders of the PHP project that we undertake have some
problem at hand. We can put our imagination to work just by looking at the current
solutions they have and by building on top of those.

Embrace change
Throughout the project life cycle, you will need to deal with changes. Even if you
are using a framework today, if we hit a technical roadblock due to some policy or
strategy change at the top, we might need to switch the framework. Now that is a
drastic change. However, we have to change the selected framework.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[71]

There is nothing permanent except change – Heraclitus

One fundamental solution to the problem of changing requirements is to be ready to
accept the change requests and be willing to change. If we have designed the system
in such a way that the system cannot be changed, or if we did change and everything
comes crashing down, then it is going to be a serious problem. No one designs the
application to be immutable by intent. But the system gets larger as the project
progresses, and the software becomes big and messy, making it fragile.

While we need to keep our system design simple, we also need to make the system
tolerable to changes. Though it sounds complex to design a system to tolerate
change, we can achieve this by following a few principles. Things as simple as the
use of a coding convention, use of constants instead of hard coded values, and
separation of concerns will lead us to deal with changes better.

The other most intriguing factor when it comes to dealing with change is the
resistance to change on the part of the team members. In this aspect too, nothing
could help more than education.

Simplicity is a mindset
The secret of success, when it comes to dealing with complexity, is to have the
mindset of simplicity. The coding discipline, the team iterations, approach towards
design, use of tools, use of libraries, use of frameworks, assignment of team
members, all should be done with simplicity in mind.

The rationale is that, we as human being find it very difficult to deal with complex
problems and complex systems. But unfortunately, today's software realities ends
with us building very complex and complicated systems. We need to break down the
problems, make use of existing knowledge, and tools on software, and try to break
down the complexity into simple and manageable small elements. That will help us
to succeed with our PHP team projects.

www.it-ebooks.info

http://www.it-ebooks.info/

Dealing with Complexity

[72]

Summary
Implementing a pattern such as MVC manually, without a framework, requires a
great deal of engineering effort and time, and is also more error-prone. Therefore,
we will benefit a great deal from the use of a PHP framework.

When looking for a PHP framework for our project, there are various aspects that we
need to worry about. We need to make sure that those aspects are up to satisfaction,
with respect to the project at hand.

Both technical aspects, as well as team and human aspects, need to be taken into
account when evaluating a framework for our project. Educating the team with
respect to expectations, requirements, and technical aspects in relation to the project
and the framework to be used for the project will be a key factor that governs the
project success.

Simplicity is the most significant principle when it comes to designing and
implementing the project. We need to keep focus on the project-specific
implementation that we do on top of the framework, and ensure that we adhere to
simplicity principles to guarantee that we can manage and maintain the PHP project
in the long run. Each team member needs to consciously contribute to keep the
project simple and deal with complexities.

www.it-ebooks.info

http://www.it-ebooks.info/

The Process Matters
If we are to succeed with anything that we do as we go along, the way we do it matters
a lot. For example, our ability to pass an examination depends on the way we follow
the course, attend the coursework, read the additional material, and study for the
exam, from the day we start attending classes for the subject. This phenomenon applies
to software development as well. People often look at the software application, in other
words the product, and judge the quality of the software. However, the fact is often
overlooked that the kind of process that is used to develop the software has a major
impact on the quality of the software that is delivered.

In this chapter, we will look into the importance of the process for PHP projects.
Even though PHP projects seem to be simple, as discussed in the first chapter,
today's enterprise applications, which are developed using PHP, demand discipline
and a systematic approach for the projects to be successful.

In this chapter, we will discuss:
•	 The relationship between the process and the product
•	 Consequences of ignoring the process
•	 Why the process must be respected
•	 Moving from no process to some process
•	 Process helps, not hinder
•	 A simple process for PHP projects

www.it-ebooks.info

http://www.it-ebooks.info/

The Process Matters

[74]

Process and product
In the software engineering discipline, the process takes center stage when it comes
to developing software. One of the key objectives of the use of a process model in
software engineering is to ensure that we can predict the time and effort required
for the software being developed. The process aims to cut down the number of
bugs, increase developer productivity, and improve the quality of the software
being developed.

The quality of a software application defines its ability to fit the
purpose that the software is being used for. Quality is the ability of
the software application to meet the needs of its users.

If we adhere to good practices in our process, the possibility of ending up with
a high quality product is very high. In other words, the quality of the product is
governed by the quality of the process.

The key challenges faced when ensuring product quality includes our ability to meet
user expectations, reducing the number of bugs, ensuring that we can accommodate
changes in requirements, and guaranteeing quality aspirations such as security
and usability. In theory, user requirements and user expectations are identical.
However, we need to understand that the user will have trouble explaining the
expectations precisely. Therefore, there can be a gap between what we capture as
user requirements and what the user expects in the back of their minds.

The kind of process we have can help us deal with these challenges. For example, if
the process facilitate regular deliverables in shorter time intervals, it becomes easy
to get the user to evaluate those and incorporate the user feedback into the product
effectively. Incorporating user feedback makes sure the product we develop better
fits the user's purpose. If the process facilitates regular reviews, we can ensure that
bugs are found earlier and hence, over time, we would be able to cut down the bug
rate drastically.

In a PHP software project, the quality of the application being developed can be
hindered by the violations with respect to the application of the MVC model. In each
layer of the MVC model there can be various mistakes that could lead to various
quality problems. For example, in the view, there can be inconsistencies among
various forms and reports with respect to where the action buttons are placed and
how the columns of reports are laid out. These kind of inconsistencies can lead to a
great deal of usability problems and the end users can tend to think that the system
is of low quality.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[75]

One other main problem related to presentation would be the lack of data used in
forms or reports. The root cause for such a situation would be the fact that a proper
technique was not used to capture what the user really wanted. For example, we
need to sit with the users and try to fully capture what they want to see in a report
and what they want to capture with a form. If, as developers, we make assumptions
on what the users might want, the chances are that we might not be able to capture
what the user really wanted. Collaborating with the user is the key to understanding
what they really want.

Sometimes, users might find out that the application did not do what they wanted
it to do. Often, developers could get carried away by the technology and elegance
of the application's architecture. Those aspects are important for an application.
However, in enterprise applications, the most important aspect is to make the
application fit for purpose. Irrespective of the fact that the application is technically
superior, it needs to help users to get the job (that they want out of it) done.

A software process is the set of activities that produces a software
product. Each activity will have an associated result. When those
results, from each activity, are put together in some defined order,
it will result in a software product.

If we have a process in place, it should guard us against slipping out of the quality
aspirations of the application being developed. Inconsistencies, not only in UI, but
also in all aspects (such as the APIs of the interfacing layers) can be avoided with
the help of a process that the team follows. For example, we can define the expected
consistency guidelines for the user interface, and through the process, we can define
steps for the team members to follow. This would ensure that they would follow
the set guidelines. They can refer to the guidelines before attending to a task, while
designing the UI, and after the implementation is done. There can be review sessions
to verify the implementation against the guidelines. The idea here is not to define a
set of rules that the team members follow while working on the project, but rather to
let them know what to be done, in case they want to ensure high quality outcomes
form what they do. In other words, guidelines are not rules, rather they are advice on
how to do things right. The team members can learn from them and build on top of
those, and at times, even go to the extent of improving the guidelines themselves.

www.it-ebooks.info

http://www.it-ebooks.info/

The Process Matters

[76]

The process could enforce that we capture the user story using some tools, before
we design and implement that. It is easy to get a very high level picture of what the
users want and jump into implementation, especially with PHP. However, in a
well-defined process, the input for the design and implementation phase for a user
story would be a well-documented user story captured by analyzing what the users
want. This ensures that we meet the user's expectations in completion rather than
partially, and users will admire the software that we develop to be of high quality.

User Interface
Consistency
Guidelines

PHP Coding
Conventions

User Interface
Designing

User Interface
Implementation

User Familiarity
Guidelines

User Interface
Layout

Guidelines

When designing user interfaces for forms and reports, we can use story boards to
ensure that we capture the requirements properly. Given the simplicity of the PHP
language and its ability to facilitate a simple implementation in quick time, we can
rapidly build some prototypes. This way, we will get the user feedback sooner,
before we jump into real implementation.

User Feedback Evaluate Design
with Users

User Interface
Designing

User Interface
Implementation

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[77]

Software processes simplify our lives by ensuring that we do not miss some trivial
activities, which introduce some good practices on our path to implementing a
good product. Sometimes, developers tend to treat a process to be something that
is burdening the free flow of design and implementation. Of course we can, and we
should, make the process simple and fun to follow for developers. This is especially
true when a programming language as simple and powerful as PHP is in use. But at
the same time, the importance of a process in place should not be overlooked.

The article that can be found at http://www.tonymarston.net/php-mysql/
infrastructure.html, titled, A Development Infrastructure for PHP, discusses
a basic framework that can be a useful reference for your PHP project.

Ignoring the process
With a powerful scripting language, such as PHP, the individual development tasks of
a project can be very simple. When the complex system is broken down into smaller,
simpler tasks, the usual temptation is to not see the complete picture. Therefore, the
individual team members will not see any rationale for a systematic approach for
doing things that are too simple and trivial.

Over-simplification of the tasks at hand can be life threatening when it comes to a
serious PHP project. If the project is not serious, you do not need an organized team
anyway. It is true that we should divide the overall complex problem into smaller
manageable parts. However, that should not lead to a situation where the team
members are misinterpreting simplicity. If the task is so trivial, let it be so and do not
try to make it complex. However, always think of the overall picture of the entire
project. We need to always take into account the fact that there are other members of
the team working on the other parts of the project, the view, the controller, and the
model. We need to make an effort to be in sync with the rest of the team and ensure
that all individual pieces of the puzzle, which the team is working on, fit together. It
is the process that helps us to be consistent across and to be in sync with each other.
Overlooking the process due to perceived simplification of the individual pieces of
the puzzle can lead to project failure.

www.it-ebooks.info

http://www.it-ebooks.info/

The Process Matters

[78]

As mentioned at the end of the previous section, developers usually tend to treat the
process as a reason for slowing things down. It is far easier to just work on the code
and skip all of the formalities around. Doing a quick and dirty hack makes sure that
the system is up and running and gets over that nasty bug, and it is required to do so
at times.

Bugs

Bug Fixes

Testing

Coding

However, the most important aspect that we need to keep in mind is the fact that
we work in a team. The dirty fix that gets over one bug, might introduce several
new ones. In the context of software engineering, regression is a bug which makes
a feature stop functioning as intended. Regression can also break what others
have done and what others are planning to do. Therefore, if an API is hacked to
work for one case it might break many other cases. How can we prevent this sort
of regression? The process is supposed to help here. If you follow the process that
should guard against regression. If the process does not do that, we need to fix the
process, to ensure that it helps us to keep the project on track.

The article located at http://qa.php.net/write-test.php, discusses how to write
tests for PHP effectively.

Process must be respected
Rather than enforcing something called process on the team members, it is a good
idea to get the team to define, agree, follow, and improve the process themselves.
It is a fact that the software we develop with PHP is no longer simple. If we try to
make the software over simplified, the chances are that the users might find the
software we develop useless, and the users will loose the purpose of employing
a team to develop the software. Therefore, the better approach is to understand
the true complex nature of today's enterprise software and be prepared to deal
with complexity.

Trying to be quick and overlooking details is short lived. A very heavy process
where team members spend more time on non-real work also kills. The best is
to have a process in place that the team is comfortable living with.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[79]

The element of the people factor in a process is critical to the success of the PHP
project. The process is a set of activities, and the team members need to practice
those activities. Defining a process is the easier part, but getting the team to follow
that is the most important, and sometimes most difficult.

If we refer to any book on software engineering, we can find loads of information
on various software process models. However, most of those traditional processes
would not be a good fit for a PHP project. We might not need such rigor that is
demanded by traditional software processes in a PHP project. Also, the dynamic and
energetic nature of PHP developers would not tolerate a rigorous process, making it
hard to get them to follow and adhere the process.

If we are to use our own, self-made process for our PHP team project, we still
can borrow from the traditional process models. We should pay attention to the
following key areas in a software process:

•	 Understanding user requirements
	° What do the users want?
	° How can we model exactly what is in users' minds?

•	 From model to design
	° What should be the right design (both, architectural and user

interface) that would help realize the model that matches user
expectations?

•	 From design to implementation
	° Get the design and convert that to a working implementation

•	 Test
	° Verify that implementation matches users' expectations
	° Find gaps between what the users wanted and what the

developers really implemented

•	 Fix
	° If there happens to be gaps between what is expected versus

what was implemented, then fix those issues

•	 Verify
	° Verify that the system works after fixing any bugs

www.it-ebooks.info

http://www.it-ebooks.info/

The Process Matters

[80]

•	 Feedback
	° Deliver to the user and collect user feedback
	° Be prepared for changes
	° If changes are required, start a new cycle with requirements

gathering and follow through the process cycle again

Software teams prefer short iterative cycles, so that the user feedback can be
facilitated sooner into the product, before the software has deviated too much from
what the users really want. If we were to drift too much from user expectations, the
effort required to rectify the direction would be too much.

Requirements
Analysys

System Design

System
Implementation and

Unit Testing

System
Integration and
System Testing

System
Deployment and

Maintenance

In a typical software process life cycle (as shown in the preceding screenshot), we
start from the requirements analysis to understand the user requirements. Then,
based on the requirements gathered, we do a systems design. Based on the system
design, we do the system implementation. The implementation is done by multiple
developers who are responsible for unit testing their own areas. Then, you integrate
all of the pieces together and do system testing, to ensure that the entire system
operates, as expected. Once the system tests are satisfactory, we can deploy the
application to the live system, and the system maintenance begins. Rather than
following these steps only once for a project, we can carry out several iterations of
these steps to come up with the complete system.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[81]

Team members who are used to ad hoc development often tend to overlook the need
for testing time, and more importantly, fixing and verifying time. While it can be
assured that the developers might do a good job with the code for common cases, the
value of testing comes when it comes to testing for edge cases. Sometimes, if these
edge cases are not covered, the system might even come down to its knees, at the
hands of a malicious user or even an ignorant innocent user. Therefore, it is a must
to account for the time for testing, fixing, and verifying of issues; even with a PHP
project. When we come up with time estimates, we must include some buffer time
for these activities.

The software team can get together and design a process that suites them to cover
these aspects of a process. That way, the team will be better off in understanding
why each step of the process is in place. However, it is also important that someone
in the team has good experience about past projects, so that he or she can ensure that
vital parts of the process phases are not taken lightly or overlooked.

The alternative to defining our own process is to take a well-known process model
and fine-tune it to meet our needs. This is a more recommended approach when
choosing a process, as defining our own process from scratch is almost equivalent to
reinventing the wheel. However, the challenge here is to get the team to follow the
process. Because unlike in the case where the team invents their own process, the
chances of the team members understanding each activity in the process is low.

Follow the process. The most important aspect of a process is not the
fact that a process exists, but rather the fact that the team members
follow the activities defined by the process.

There are some characters that have fewer problems conforming with the process,
as their goal is quality. There are others, who would rather focus on getting things
done in a quick time. They will do their best not to follow the process, even if they
understand its meaning, because they just feel hindered by the process in place.
Teams always will and should include both kinds of persons to get the best out of
both, as the group can help achieve quality and the other help reaching the goals in
the given time.

From no process to some process
If there is no process at all used for the current project, it might seem as if it is
impossible to introduce a process. However, moving from no process to some
process is not very difficult.

www.it-ebooks.info

http://www.it-ebooks.info/

The Process Matters

[82]

If we are stuck in the vicious cycle of code-test-code, it is quite easy to convince the
team about the benefits of a process. Just start tracking the number of bugs popping up
each day, along with some rough estimates of the time spent on debugging (to locate
the cause of the bug). It will be evident to anyone in the team, with some data, to figure
out that the effort is wasted on debugging issues over and over again. Everyone will be
delighted to find ways in which these wasted debug cycles could be saved.

Bugs are inevitable in software. However, it is also possible to drastically
cut down the number of bugs we generate, by being a bit organized.

The first step would be to analyze the kind of bugs that we have been seeing and
understand the cause for them arising. Was it ignorance, lack of understanding on
requirements, problems in interfacing the layers, and so on that were the root of
the problem? And based on that analysis, we can figure out what can be done to
improve in terms of quality, reducing the number of bugs.

For example, imagine that most of the bugs are in the user interface layer. Then,
assuming that we are using a PHP framework, we can be assured to some extent that
the bugs are not due to inter layer interfacing, because the framework is supposed
to protect us with that aspect. Therefore, it might be a good idea to evaluate our
presentation layer implementation techniques. If the team members who are
involved with the presentation layer are experienced ones, we can be assured that
the bugs are not due to the incorrect use of PHP programming constructs. If the
team members are novice programmers, one of the first things that could be done
is to review the code on a regular basis. For example, as soon as a module, or part
of it, is completed, a code review can be held and the problems pointed out. If the
programmers are experienced, the problems might be in consistency with respect
to each other's work. If that is the case, the starting point would be to define some
guidelines that should be looked into and followed during the implementation
process. And for each report and form, when completed, there can be a brief review,
with everyone in the room, just to ensure that the team is on track. These reviews
would be required for only a few numbers of implementations to start with. After
some time, everyone will be familiar with what will be done and the inconsistency
problems would be gone.

It is important to have everyone in the team participate in the reviews,
be that a code review, design review, or just a brief review to verify some
guidelines. Those review sessions become educational sessions, and let
everyone learn from each other.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[83]

If we find that the user interface bugs are due to the lack of understanding about the
user requirements, we can introduce a storyboard modeling session that everyone
on the team can participate, prior to designing and implementing user interfaces.
Note that it is not only the UI engineers, but also the others, such as those working
on data layer and business layer team members, who should participate in these UI
modeling sessions. This way, we can leverage the knowledge of those team members
who have a better understanding on data and business aspects of the application in
the UI. That will ensure we do the right thing and have all user-required elements in
our user interface.

User interface is the face of the application. It is the layer that the users get
to see. It is common in most software applications that the majority of the
bugs reported would be against the user interface.

These are some examples of how we can go from no process to some process that we
discussed in the previous paragraphs. As you can see, going from no process to some
process is not that complicated. Although it was only the user interface, in other
words, the presentation layer, that we took as an example here, the same approach
can be extended to overcome problems in the business logic layer and the data layer.

It is a myth that software professionals sometimes believe that implementing a process
where there is none will be hard. Not only that it can be done, but also it can be done
effectively, without facing problems such as team resistance. All that is required is to
let the team understand how it can help to be effective and productive in saving their
time and effort. Once the team gets used to it, they will see the value of it and would
never want to go back to the vicious cycle of code and debug, ever again.

Process helps not hinder
A process can be seen as a burden if the people feel like they need to follow rules and
obey them. That kind of feeling is very difficult to live with, when it comes to PHP
developers.

As it was discussed in the previous section, it is not that hard to implement a process
and get a team of PHP developers to follow it. The key to success is to pick and
choose what fits our needs and use them.

www.it-ebooks.info

http://www.it-ebooks.info/

The Process Matters

[84]

Often, young developers want to occupy themselves with what they want to do.
They want to explore new things, learn new things, and try them in practice. If they
do not try new things, they will end up doing routine boring things, day in and day
out. That would result in low productivity, and we would have a hard time getting
things done on time. This is why we should get support from the project team to
stick to the process in place. The team should be challenged to improve the process.
They should be challenged to seek new ideas on how to develop the application so
that there will be fewer bugs in the system against their names next time around.
Therefore, the process can help ignite passion in the PHP developers to do the right
thing when it comes to implementing the application. The team should view the set
of activities defined by the process as helpers.

Simple process for PHP projects
In this section, we will look into a process model that we can use as a starting point
for the PHP projects that we are working on. The process is designed with the MVC
framework based design model in mind, which we have discussed in the previous
chapter. It is assumed that the workload is broken down based on the Model-View-
Controller pattern, and team members are assigned to work on each layer based on
that breakdown.

The process model clearly depicts how the separate concerns such as the data layer,
the business layer, and the presentation layer can be worked on in parallel, and at
the same time, how those separate concerns fit with each other to form the entire
system. If you carefully evaluate this process model, there is no activity for system
integration. So one might question how the separate layers would be integrated
with each other. However, if you pay attention to the design and implementation
details of each layer, you will notice the dependencies mentioned in each layer,
which lead to the integration. For example, business logic implementation requires
the concrete database design, as well as the data access layer. The final user interface
implementation would be done on top of the business logic implementation.
Therefore, the integration of these independent layers happens seamlessly, along
the way, in the process. If the team follows the process as it is, the integration would
result in naturally.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[85]

User
Requirements

Analysys

User Evaluation Data Modeling Data Design Database
Implementation

Testing

User Evaluation
Business
Modeling

Business Logic
Design

Business Logic
Implementation

Testing

User Evaluation
User Activity

Analysis
Storyboard

Design
Initial Prototype
Implementation

Functional
Prototype

Implementation

User Evaluation

Testing Final
Implementation

User requirements
The initial activity of the process model is to analyze the user requirements. It is
obvious that in any software project, the first and foremost activity is to have an
understanding of what the users require.

There are various tools and techniques to analyze user requirements. However, it
is important to note that, while it is important to understand the user requirement
in full, the idea here is not to write loads of documents, especially when it comes
to PHP projects. What is more important is to make sure that we model what the
users require and, based on the models, get the users to provide feedback, and then
improve the model based on the user feedback. Some simple techniques that can be
used to capture requirements include:

•	 Studying the existing system
•	 Observation of the users in action in a real environment
•	 Interviews with potential users and stakeholders of the system

www.it-ebooks.info

http://www.it-ebooks.info/

The Process Matters

[86]

Some tools that can be used to capture requirements include:

•	 Data flow diagrams showing how data flows and processing happens in
the system

•	 Use case diagrams that portray how potential users of the system would be
using the system. When using use case diagrams, it is critical to capture all
of the major use cases of the system at a high level. It does not need to be too
detailed, but we need to ensure that we have not missed any key use case
scenario in the implementation. We can always seek the help of the users to
help us validate the use cases and fill in the gaps, in case we have missed any
key user requirements.

When documenting user requirements, we need to be comprehensive, concise, and
clear. This is because the team members need to be able to refer to those, whenever
they want. If the requirement specifications are too bulky and take time to read, it
might not help the team. Therefore, it is always a good idea to use diagrams and
tables to summarize information, whenever possible, to make sure that the captured
information can be grasped by the team members at a glance.

We need to make sure that the team members really refer to the requirements
to during the project life cycle. Therefore, anything that encourages them to use
those requirement specifications is welcome and would make the project's success
more probable.

Modeling what the users want
The purpose of the requirements gathering activity is to help us understand what the
users want. The next step is to come up with a model that bridges the gap between
the real world and the software world. For example, we need to be able to map the
user requirements to the data model, and the business logic model, that we can
implement with the software technology that we know.

Data modeling
Data modeling activities are supposed to produce the data model that represents the
data involved with the system under consideration. Entity relationship diagrams are
the most well known tool to help model data in a system.

Note that modeling data is the first activity following the user requirement
gathering. This depicts the importance of the data modeling activity with respect to
the design and implementation of the rest of the system. Most of the systems are all
about effective data storage processing and presenting.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[87]

The outcome of the data modeling activity is a set of diagrams that represent the
entities within the system and their relationship to each other:

Input:
Requirements
Specification

Data Modeling Output: Data
Model

It is important to note that a data model is not the same as a database design. The
model is the reference that can be used as the input to the database design activity,
and the data model is also the input for the business modeling activity of the process.
Data design will be explained later in this chapter.

Business modeling
Once we understand the data involved with the system, the next step is to
understand the business activities carried out with those data. Business logic
modeling can be done with tools such as data flow diagrams or use case diagrams.
The objective is to understand what sort of business activities the users carry out
with the software system being developed. The inputs and outputs of the business
logic processing and the various data stores, where the data is pulled from, are
modeled in this phase of the process. Like in the case of data modeling, we can
validate the business model with the user and incorporate user feedback back into
the model. It is also noteworthy that the business modeling activity is different from
the business logic design activity. Business logic design is based on the business
model that we develop in this phase of the process.

Input:
Data

Model

Business
Modeling

Output:
Business

Model

The output of the business modeling activity is the business model. Simply speaking,
it is a set of diagrams that represent the use cases or the data flow. Like in the case of
data model, the business model should also be simple to refer back, if team members
require to do so.

Once we have both the data model and the business model, we can move on to the
user activity analysis.

www.it-ebooks.info

http://www.it-ebooks.info/

The Process Matters

[88]

User activity analysis
While executing business functions with the software application, users engage
in various activities using the system. Analyzing those activities becomes the next
important activity in the process, and it also opens up the doors to understanding
and designing the user interface.

Based on the business model and the data model, we can analyze the various
activities that the users would want to carry out with the system. We can make
use of the data processing functions of data flow diagrams, or use case diagrams,
and come up with a list of user activities for each business use case of the system.

The list of user activities becomes the input for the storyboard design activity.

Before looking into the details of the presentation layer design, let us step back for
a moment and look into data layer design.

Designs and implementing the data layer
As mentioned earlier, the process model proposed in this chapter is intended to be
used for PHP projects, and therefore, is based on the MVC pattern. The data layer
represents the model in MVC. In the design of the PHP application, we need to first
attend the data layer.

Data Modeling

Data Design

Database
Implementation

Testing

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[89]

Using the data model as the input, we can perform data design. The data design
can be independent from a specific database management system. However, the
information, such as data types, needs to be taken into account. The number of
tables, their relationships, the volume of data involved, and related performance
implications need to be taken into account.

The next activity is the implementation, keeping open the option of switching
the database management systems or supporting multiple database management
systems open. In this activity, we might either use the database management
systems directly or use SQL and try to be database agnostic. In addition to creating
the database, the team members involved with the data layer implementation also
devise plans for testing and also for carrying out unit testing.

In addition to SQL based unit testing, they need to implement the database access
logic, which is also a part of the database layer, using PHP. The team members can
then implement unit tests with PHP to verify the implementation. Executing the unit
tests can be automated using PHP frameworks, upon each source code change.

Once the implementation is complete, it can be tested and verified completely using
system testing by a quality assurance team.

Database implementation is a prerequisite for business logic implementation.
However, business logic design need not wait until the database implementation
is complete. As soon as data model is available, business modeling can be done
and followed by business logic design. It is the business logic implementation that
requires database implementation. The business layer sub-team can start its design
work in parallel with the data layer sub-team and work side by side on their designs.

Designs and implementing the business layer
Output from the business modeling activity is the input for the business logic design
activity. The main objective is to design algorithms required to implement the kind
of business logic that the users want the system to execute. We can use a natural
language, as well as sequence diagrams, as tools in this phase. As PHP is close to
natural language, we can use PHP in place of natural language for the business
logic design. However, the risk here is that it can degenerate into coding activity.
Therefore, it is advisable to use sequence diagrams and natural language, as per
requirement, and only use PHP when it comes to the real implementation.

www.it-ebooks.info

http://www.it-ebooks.info/

The Process Matters

[90]

Business logic implementation is to implement the designed algorithms with PHP.
We need to have the database access layer available for this phase. Unit testing can
be done along the way to verify the implementation, the logic, algorithms, and the
data processing. It is also welcome to automate the unit testing. This will verify the
system to guard against regression when changes are done.

Business
Modeling

Testing

Business Logic
Design

Business Logic
Implementation

Implementation should carefully evaluate the need for the design and
implementation of APIs. Also, the use of object-oriented features versus functional
features of PHP should be evaluated. PHP code reuse, proper use of the PHP
framework in place, as well as adhering to defined coding guidelines and best
practices, must be given due attention in this phase of the process.

Once the implementation is done, system testing can be done to verify the
implementation against the requirements. Note that we can start testing as soon as an
independent module or a sub-system reaches completion in terms of implementation,
without waiting for the entire system to complete. This way, we can make sure that
issues are found earlier, and the development team as well as the testing team are kept
busy all of the time.

Design and implementation of the user
interface
The output of the user activity analysis is the input to the user interface design phase
of the process. Business modeling is followed by the user activity modeling. User
interface design can take place in parallel with the data design and business logic
design. However, for the implementation of the user interface layer, the business
logic implementation must be available.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[91]

Testing

User Activity
Analysis

Storyboard
Design

Initial Prototype
Implementation

User Evaluation

Functional
Prototype

Implementation

Final
Implementation

The first activity in the user interface design is the design of the storyboards. It is a
rule of thumb that, for each user activity, there will be a corresponding user interface
element in the user interface. Therefore, we should have a storyboard for each user
activity that we have identified.

Storyboard design can be done on a white board or with a pen or pencil and paper,
with some rough sketches, to capture and model the user interface elements to
support the user to interact with the system. The best practices, human computer
interaction guidelines, as well as the consistency guidelines, should be taken into
account in this phase of the process. We can get the storyboard designs reviewed by
the users. Once we get the user feedback, and incorporate the feedback to the design,
we have some agreement between the users and the team on the design. Then, we
can move on to the next activity in the process, the prototyping phase.

With prototypes, we can convert the storyboards into an initial working model of the
application. We can use PHP and HTML to get the job done in this phase. We can
even make use of the PHP framework that we are using for the PHP project to build
the prototype.

www.it-ebooks.info

http://www.it-ebooks.info/

The Process Matters

[92]

When building prototypes, there can be two modes of operation. One is to build the
prototype to be thrown away later, to start on the real implementation from scratch.
The other mode is to implement the prototype, so that it can be used later for the real
implementation. Both modes have their own pros and cons. The throw away model
reveals us the shortcomings in the design to us and helps us to fix those and come
up with a better design later on. However, throw away models waste time, as we are
working on something to be thrown away and that would not contribute to the final
product. Prototyping with the objective of using that for the final product saves time.
But the problem with that model is that a weakness in design of the prototype, if any,
would be also inherited by the final implementation. With PHP, we can be flexible,
and willing to throw away any bad designs, and in case the prototype is deemed to
be good, use the same as the base for the final product.

The initial prototype can only focus on the layouts, without bothering with
functionality and connecting that to the model or controller in MVC. Once we
show that to the users and get their feedback, we can move on to a more detailed
functional prototype implementation. That detailed implementation needs to
make use of the business logic implementation and the database. Again, the idea
of this functional prototype is to capture user feedback, and we must use the PHP
framework that we plan to use for the project for this. Also note that given the time
and effort that we are going to spend on the functional prototype, it would not be a
good idea to throw this away. Therefore, we need to take some effort to make this
as close to the real implementation as possible. If there are problems, we should fix
these as early as possible. The functional prototype also needs to be run by the users
and their feedback should be noted down and incorporated. One of the problems
with the functional prototypes being evaluated by the users is that, because they are
functional, the users might tend to mistake those with the final product. Therefore, it
must be clearly communicated to the users and noted down that it is a prototype for
evaluation purposes and not the final product by any means.

Once both the developers as well as the users, are happy about the prototype, we can
move on to the final implementation of the presentation layer. As in the case of the
implementation of the other layers, the developers can take care of the unit testing
in this phase. There are tools that can automate web-based interface testing that the
developers can make use of in this phase.

As and when modules are completed, those can be tested by the QA team.

The user interface sub-team of the PHP project team, can work closely with the
business layer and data layer sub-team to make sure the success of the overall project.
After all, it is a single project as far as the users are concerned, and for the product
being developed to be useful, each part has to work with each other seamlessly.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[93]

Summary
In this chapter, we discussed the need for a software process model for a PHP
project. With a powerful yet simple programming language like PHP, the usual
temptation is to overlook the need of a process. However, the increasing complexity
of the PHP applications demand a systematic approach from start to end of PHP
team projects nowadays.

Though it is seemingly difficult to define a process and get the team to follow
that process, as it was discussed in this chapter, it is quite possible to implement a
working process model and get the team to follow that. The secret of success is to
get the team involved and let the team members themselves understand the need
of a process. Start simple and improve as required and consciously evaluate where
we are in terms of our process and identify where we want to go. A simple measure,
such as the number of bugs, their frequency, and the nature of those, would reveal
where we are in terms of the process. Reducing the number and frequency of the
bugs would be the next immediate objective, based on which we can formulate a
process to start with.

In this chapter, we also discussed in detail how following a process model can help
improve the quality of the software that we develop. Guidelines and best practices
can be used to improve the quality of the work done by team members. Regular
reviews can further enhance the team's ability to produce quality software. And, as it
is the users who really have the final say about the quality of a system, we are better
off engaging with the users as much as possible, getting their feedback on what the
project team produces on a regular basis, and incorporating their feedback to the
system being developed.

In the final section of this chapter, a process model, which can be used for PHP
projects, was introduced. This process model is designed with the use of the MVC
design pattern in the PHP projects in mind.

This process model will be a very good starting point for your PHP projects. You
should be able to improve it and customize it to suit your needs, when you gather
more experience with the projects.

In the next chapter, we will discuss the agile principles, and how the concepts
discussed in this chapter relate to the agile principles.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Agile Works Best
In the previous chapter, we discussed a process model that can be used for PHP
projects. We can use the process model as the base for our projects and can also
succeed with the projects that we are working on. If you have a second look at the
process model that was suggested, you will note that the need for getting feedback
from the users is highlighted in multiple places. This was done very consciously and
with a purpose.

We are developing software for users, and we want to ensure that the software is
really useful for the users. Over time, people working on this software have faced
the same problem over and over again. Therefore, they have come up with a concept
called agile development. In this chapter, we will explore the concepts of agile
development and will also see how these can help us with the PHP projects.

In this chapter, we will cover the following:

•	 Introductions to agile philosophy, including agile values and agile principles
•	 Common problems and fears that developers face while developing

a product
•	 What is meant by agility and how it can help
•	 Extreme programming principles
•	 Advantages of agile process models
•	 Team agility
•	 Agile process models
•	 Agile principles for the PHP project team

www.it-ebooks.info

http://www.it-ebooks.info/

Agile Works Best

[96]

Introducing agile philosophy
Agile methodology consists of the following two parts:

1. Agile values
2. Agile principles

Agile values
Agile values identify the key characteristics of the way in which we develop
software. These values attempt to avoid those practices and norms that tend to
cause problems in the development of a software application.

Manifesto for Agile Software Development:
We are uncovering better ways of developing software by doing it and
helping others do it.
Through this work we have come to value:
Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan
That is, while there is value in the items on the right, we value the items
on the left more.
Source: http://www.agilemanifesto.org/

These values try to address the key factors of success when it comes to developing
quality software. The rationale is not to overlook the values on the righthand side,
rather to focus more on the values on the left hand side. By having more of those
values on the left, we become more agile, thus responding to changes quickly.

Agile principles
The agile principles help us to stay focused on agile values throughout the project's
life cycle. These principles nurture agility in a project's team. The principles are
as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[97]

Principles behind the Agile Manifesto
We follow these principles:
Our highest priority is to satisfy the customer through early and
continuous delivery of valuable software.
Welcome changing requirements, even late in development. Agile
processes harness change for the customer's competitive advantage.
Deliver working software frequently, from a couple of weeks to a couple
of months, with a preference to the shorter timescale.
Business people and developers must work together daily throughout the
project.
Build projects around motivated individuals.
Give them the environment and support they need, and trust them to get
the job done.
The most efficient and effective method of conveying information to and
within a development team is face-to-face conversation.
Working software is the primary measure of progress.
Agile processes promote sustainable development.
The sponsors, developers, and users should be able to maintain a constant
pace indefinitely.
Continuous attention to technical excellence and good design enhances
agility.
Simplicity--the art of maximizing the amount of work not done--is
essential.
The best architectures, requirements, and designs emerge from self-
organizing teams.
At regular intervals, the team reflects on how to become more effective,
then tunes and adjusts its behavior accordingly.
Source: http://www.agilemanifesto.org/principles.html

The following sections describe the agile values, as well as agile principles in detail:

Individuals and interactions
Agile philosophy values individuals and interactions over process and tools. In
the process that was introduced in the previous chapter, the three main sub-teams
working on the data, business logic, and presentation layers have their own activities
to follow. Moreover, they have their own tools that they use. However, as it was
mentioned, it is of paramount importance that each sub-team interacts with each other.

www.it-ebooks.info

http://www.it-ebooks.info/

Agile Works Best

[98]

Not only that each sub-team should interact, but also, there should be a helping
communication between the members within sub-teams. If the team members
interact, it becomes so easy to solve problems, such as inconsistencies in the PHP
code that is written and the user interfaces that are designed. Moreover, that will
also enhance the reuse of the PHP functions, classes, and the written API methods.
This is because through interactions, individual team members can educate each
other on what the system has and what the system is about. They can also share their
technical expertise. Programming can be done in pairs so that more than one pair of
eyes would be looking at the code, as it is being written. However, interaction should
not be restricted to only those individuals who work on the same code. Interaction
should take place between all of the team members who work on the project. This is
because no matter how large the software project or the product would be, they all
work on building a single application. It needs to run as a single application at the
end of the project.

When it comes to placing the members into sub-teams, it is useful to identify
an individual's traits, preferences, and skills. Moreover, it is also useful for each
individual in the team to get to know each other so that they can share and relate to
know how, create better designs, and overcome problems by sharing experiences.
After all, it is about that human touch among the members, and no process or tool
can bring about that value into a team.

Working software over comprehensive
documentation
We can spend weeks, if not months, documenting system requirements. Some
call this analysis paralysis. You'll never get out of the system requirements
analysis phase. However, what is most important is to get the software that we are
developing to a working state. This is done so that the users can use it for real life
tasks and get their jobs done.

Documentation is required for some aspects, especially when it comes to user
documentation. However, that is also a part of the software. In the traditional software
process, before any working piece of code was written, bundles of documents were
written on what the requirements were and what the design should be like.

It is important to understand the user environments and have some reference points
to refer to them if the need arises. Often, a set of diagrams alone can capture what is
required, and we can move on to make the software functional.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[99]

Customer collaboration
In traditional software processes, there was this notion that the client would sign the
requirement specifications before proceeding to the implementation phase. It is a fact
of life that the real world changes. The requirement specifications that you signed
today can expire tomorrow. Moreover, when the system is delivered, the client might
see that the software doesn't fit their purpose. This will result in the system being
discarded by the users and will be branded as low quality.

It is for this reason that there were so many user evaluation and feedback phases
that were added to the process. That was introduced in the previous chapter.

When we closely collaborate with the clients, making them a part of the process, and
giving them the opportunity to have their say early and often in the process, there
are chances that we make the software that we develop fit the bill for their use.

It is often the case that the users will not know for themselves what they want.
After all, if they knew, they would not have hired us to develop the software for
them. They would have done it themselves. Therefore, it is our job to make them
understand what they want, along the way, while we develop what they want.
Moreover, you will note that the team will also be learning more and more about the
system, as the project progresses. The best way to expand the understanding, both
of the users and of the team, is to collaborate with customers very closely and on a
regular basis.

Responding to change
Change is inevitable. Therefore, it is not feasible to stick to a plan and follow that.
If we are to adopt a change, even the plan we should change over time.

A process model provides us with a framework that will guide us on what to do
and when to do. It is a good plan to help us stay on the course. However, we need
to understand the need for change on the part of the users. We cannot afford to not
respond to the changes requested by users, simply because we are in the middle of
our process (in other words, in the middle of our plans). It is for this reason that we
should have ample room for incorporating users' feedback into what we are designing
and developing. More often than not, feedback comes disguised, as the requests
change. As the users do not know the internals of the software application, their
wishes might be beyond the scope of developers. Nevertheless, these expressions
from users will be an important feedback. The key to success is to make sure that all
of the project's team, as well as the users, are comfortable with the changes.

www.it-ebooks.info

http://www.it-ebooks.info/

Agile Works Best

[100]

Customizing agile to our needs
Every project is unique. Therefore, we can learn from agile values and customize
them to suite our project's needs. The process model that was introduced at the end
of the previous chapter is a good starting point. Moreover, we can follow that model
with agile values in place. The process can be enhanced and complemented with
agile values, and can be customized and fine tuned as the time goes by.

Common fears for developers
In this section, we will discuss some of the fears that developers face while working
on a software project. We need to pay attention to these fears because they can
impact the project's success. First, we need to understand what these fears are.
Then, we need to understand their implications on the project's success. This
understanding will help us to cope with them in the correct manner. We can also
prevent them from getting in the way of the project's team members, when reaching
towards project's success.

Producing the wrong product
The project will produce the wrong product if we do not clearly understand the
requirements of the users. There's always the possibility of a gap between what we
understand and develop, and what the users want. We can try and bridge this gap,
which we will discuss later in this chapter. If we let this gap stay as it is, we will
end up producing the wrong product. The developers will be negatively affected
if the wrong product is produced. On the other hand, it is bad for the developers'
reputation. Producing the wrong product will also affect the confidence level of
the developers. If the product that was produced by the developers was the wrong
product and got rejected by the users, it will have a long-term impact on the careers
of all of the developers in the project's team.

Product of inferior quality
While producing the wrong product is the worst case scenario, producing a product
with inferior quality also has a negative impact on all of the members of the project's
team. A product delivered with inferior quality will reduce the confidence that the
management team has on the project's team. This will also affect the moral of the
team members. Therefore, everyone on the project's team fears delivering a low
quality product.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[101]

Getting late to complete the project
Not all, but many projects run late. The project will be late due to various reasons.
One of the things that can make the project late is misjudgment of the requirements
and the misjudgment with respect to the technology chosen for the project. If we
choose an incorrect technology, it will cause us to run into many technical problems
while delivering the real work. The dangers of the delay with a project include losing
the project. Because of this, the organization will lose revenue opportunities. It also
affects the future business of the organization. It will also affect the team members
individually because they will be deemed as not capable of completing the assigned
tasks on time. That will have a negative impact on the image of the team members
and the organization's leaders. A project that is getting delayed is often looked at,
as a cost center in an organization, rather than the revenue-generating engagement.
Therefore, during the next round of performance evaluation and salary reviews, the
team members who were part of the project that was delivered late will not have
many positive reviews. This will also affect their respective careers in the future.

It is important to note that when the specifications change, the resulting
implementation times can also vary. Therefore, calculating time buffers for such
unforeseen scenarios is important. In the following sections, we will discuss how
agile development will help reduce delays or help us to identify the possible delays
early in the project. This can be done by effectively collaborating with the users and
incorporating users' feedback into the product that is being built early and often.

Too much work in too little time
If the team starts feeling that the project is getting late, then there are chances that
they will need to work for more hours (per week). Overworking has many negative
consequences in addition to the immediate problem of having to work in the nights
and kill rest. On one hand, it reduces the quality of life leading into all sorts of
problems (for example, family and relationships related problems). On the other
hand, it opens the door to a bunch of problems that will have long lasting impacts
on the individuals and organization, such as stress, getting bored with what team
members do, and deterioration of the quality of work. These long-term consequences
will have far-reaching ripple effects. Therefore, as much as possible, we need to try
and prevent doing overwork.

Overwork also results due to slip-by bugs. Rushing to fix one bug and
overlooking the overall picture can result in a snowball effect with respect
to bugs. Tools, techniques, and metrologies that prevent sloppy work will
cut down a considerable amount of rework and save time.

www.it-ebooks.info

http://www.it-ebooks.info/

Agile Works Best

[102]

Traits of agile team members
Developers always look to overcome the fears that were described in the preceding
section. The best way to overcome those fears is to ensure that they develop certain
traits. These traits should help them to overcome the problem-causing situations that
become the root causes for the above fears. In the following section, we will discuss
the traits that are desired from the team members that follow an agile process.

Competence
Any project needs competent team members. However, unlike the traditional
software development approaches, the agile process is much more sensitive to the
team member's competence. This is because we entrust each member to deliver
working software at any given time, and everyone in the team is assumed to deliver
with expected quality. The project assumes motivated individuals, and the team is
built on trust.

Common focus
The focus is to deliver early and often. Working software must be delivered to the
client at all times. To achieve this, the team should have a common focus. If the focus
is not unified, we need to waste time and efforts on getting all of the team members
to pay attention to where we are heading. Therefore, it is desirable to have all the
members in a team to focus on common objectives.

Collaboration
Collaboration requires good communication skills. As mentioned earlier, it is not
only about talking or writing on what one wants, but also about listening and
understanding what others want. Good communicators are also good listeners.

Decision-making ability
Agile teams are based on everyone's ability to do the job. There cannot be situations
where some of the members need to lean on others for making a decision. It is a
different matter that others can help, but each member should be able to stand up
on their own and make their own decisions. In other words, everyone should be a
leader. There can be a designated leader to make various cross-cutting decisions,
but everyone in the team owns an important aspect of the final product. Therefore,
everyone should be able to decide what is good and what is bad for that part of the
system on which they are working.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[103]

Fuzzy-problem solving ability
Most of the problems that we need to solve, while helping users in building
applications to run their business, cannot be solved using a mathematical approach.
The real-world business problems are fuzzy. Fuzzy means that it is very difficult to
define the problem precisely. Moreover, because those problems are solved by the
software that we develop, our PHP project team should be able to deal with those
fuzzy problems. This is one of the challenging areas that developers face, as the
programming language constructs are logical and hardly fuzzy. We need to get the
team members to deal with those fuzzy aspects of the problems. It is a mindset and
technique, more than a technology.

Mutual trust and respect
Each member in the team has his or her own responsibilities, and we depend on
them to deliver on those. Mutual trust is critical when we are dealing with each
other. We can always verify on what everyone delivers. However, we need to trust
them to deliver, rather than trying to micromanage individuals by thinking that they
will deliver.

Respect is also as important as trust. We need to respect each individual's ideas, their
approach, and their personal formation. Respect is most important when it comes to
interaction. Respect encourages alternative views and voices, which is the secret
of success when it comes to technically-excellent designs. Every individual in the
team should be respected so they become comfortable in being an active member
in the team.

What is agility
Agility includes effective, that is, rapid and adaptive, response to change. This
requires effective communication among all of the stakeholders. Stakeholders
are those who are going to benefit from the project in some form or another. The
key stakeholders of the project include the developers and the users. Leaders of
the customer organization, as well as the leaders of the software development
organizations, are also among the stakeholders.

www.it-ebooks.info

http://www.it-ebooks.info/

Agile Works Best

[104]

Rather than keeping the customher away, drawing the customer into the team
helps the team to be more effective. There can be various types of customers, some
are annoying, and some who tend to forget what they once said. There are also
those who will help steer the project in the right direction. The idea of drawing the
customer into the team is not to let them micromanage the team. Rather, it is for
them to help the team to understand the user requirements better. This needs to be
explained to the customers up front, if they seem to hinder the project, rather than
trying to help in it. After all, it is the team that consists of the technical experts, so
the customer should understand this.

Organizing a team, in such a manner so that it is in control of the work performed,
is also an important part of being able to adapt to change effectively. The team
dynamics will help us to respond to changes in a short period of time without any
major frictions.

Agile processes are based on three key assumptions. These assumptions
are as follows:

•	 It is difficult to predict in advance, which requirements or
customer priorities will change and which will not.

•	 For many types of software, design and construction activities
are interweaved. We can use construction to prove the design.

•	 Analysis, design, and testing are not as predictable from the
planning's perspective as we software developers like them to be.

To manage unpredictability, the agile process must be adapted incrementally by
the project's team. Incremental adaptation requires customer's feedback. Based
on the evaluation of delivered software, it increments or executes prototypes over
short time periods. The length of the time periods should be selected based on the
nature of the user requirements. It is ideal to restrict the length of a delivery to get
incremented by two or three weeks.

Agility yields rapid, incremental delivery of software. This makes sure that the client
will get to see the real up-and-running software in quick time.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[105]

Characteristics of an agile process
An agile process is driven by the customer's demand. In other words, the process
that is delivered is based on the users' descriptions of what is required. What the
project's team builds is based on the user-given scenarios.

The agile process also recognizes that plans are short lived. What is more important
is to meet the users' requirements. Because the real world keeps on changing, plans
have little meaning. Still, we cannot eliminate the need for planning. Constant
planning will make sure that we will always be sensitive to where we're going,
compared to where we are.

Developing software iteratively, with a greater emphasis on construction activities, is
another characteristic of the agile process. Construction activities make sure that we
have something working all of the time. Activities such as requirements gathering for
system modeling are not construction activities. Those activities, even though they're
useful, do not deliver something tangible to the users. On the other hand, activities
such as design, design prototyping, implementation, unit testing, and system testing
are activities that deliver useful working software to the users.

When our focus is on construction activities, it is a good practice that we deliver the
software in multiple software increments. This gives us more time to incorporate
user feedback, as we go deeper into implementing the product. This ensures that the
team will deliver a high quality product at the end of the project's life cycle because
the latter increments of software are based on clearly-understood requirements. This
is as opposed to those, which would have been delivered with partially understood
requirements in the earlier increments.

As we go deep into the project's life cycle, we can adopt the project's team as well as
the designs and the PHP code that we implement as changes occur.

Principles of agility
Our highest priority is to satisfy the customer through early and continuous delivery
of useful and valuable software. To meet this requirement, we need to be able to
embrace changes. We welcome changing requirements, even late in development life
cycle. Agile processes leverage changes for the customer's competitive advantage.
In order to attain and sustain competitive advantage over the competitors, the
customer needs to be able to change the software system that he or she uses for the
business at the customer's will. If the software is too rigid, there is no way that we
can accommodate agility in the software that we develop. Therefore, not only the
process, but also the product, needs to be equipped with agile characteristics. In
addition, the customer will need to have new features of the software within a short
period of time. This is required to beat the competitors with state of the art software
system that facilitate latest business trends.

www.it-ebooks.info

http://www.it-ebooks.info/

Agile Works Best

[106]

Therefore, deliver the working software as soon as possible. A couple of weeks to
a couple of months are always welcome. For example, the customer might want
to improve the reports that are generated at the presentation layer based on the
business data. Moreover, some of this business data will not have been captured in
the data model in the initial design. Still, as the software development team, we need
to be able to upgrade the design and implement the new set of reports using PHP in
a very short period of time. We cannot afford to take months to improve the reports.
Also, our process should be such that we will be able to accommodate this change
and deliver it within a short period of time.

In order to make sure that we can understand these types of changes, we need to
make the business people and the developers daily work together throughout the
project. When these two parties work together, it becomes very easy for them to
understand each other.

The team members are the most important resource in a software project. The
motivation and attitude of these team members can be considered the most
important aspect that will determine the success of the project. If we build the project
around motivated individuals, give them the environment and support they need,
trust them to get the job done, the project will be a definite success.

Obviously, the individual team members need to work with each other in order to
make the project a success. The most efficient and effective method of conveying
information to and within a development team is a face-to-face conversation. Even
though various electronic forms of communication, such as instant messaging, emails,
and forums makes effective communication possible, there is nothing comparable to
face-to-face communication.

When it comes to evaluating progress, working software should be the primary
measure of progress. We need to make sure that we clearly communicate this to all of
the team members. They should always focus on making sure that the software they
develop is in a working state at all times. It is not a bad idea to tie their performance
reviews and evaluations based on how much effort they have put in. This is in order
to make sure that whatever they deliver (software) is working all of the time.

An agile process promotes sustainable development. This means that people are not
overworked, and they are not under stress in any condition. The sponsors, managers,
developers, and users should be able to maintain a constant pace of development,
testing, evaluation, and evolution, indefinitely.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[107]

The team should pay continuous attention to technical excellence. This is because
good design enhances agility. Technical reviews with peers and non-technical
reviews with users will allow corrective action to any deviations from the expected
result. Aggressively seeking technical excellence will make sure that the team will
be open minded and ready to adopt corrective action based on feedback.

With PHP, simplicity is paramount. Simplicity should be used as the art of
maximizing the amount of work that is not done. In other words, it is essential that
we prevent unwanted wasteful work, as well as rework, at all costs. PHP is a very
good vehicle to achieve this.

The team members that we have should be smart and capable. If we can get those
members to reflect on how to become more effective, at regular intervals, we can get
the team to tune and adjust its behavior to enhance the process over time. The best
architectures, requirements, and designs emerge from self-organizing teams.Therefore,
for a high quality product, the formation of the team can have a direct impact.

Extreme Programming (XP)
Extreme Programming (XP) is the most widely used agile process. The
characteristics of XP can be used very effectively for a PHP team's projects. It is a
disciplined approach for software development that focuses on customer satisfaction.
XP focuses on capturing user's requirements through simple tools. Releases are
planned as a series of iterations. Tests are defined up front at the beginning of the
project iterations. Smaller releases are done based on customer acceptance tests.

XP planning
XP planning begins with the creation of user stories that are used to capture
requirements. Then, the team assesses each user story and assigns a cost based on
estimated time and effort required to complete the user story. After that, user stories
are grouped together for a deliverable increment and a commitment is made on the
delivery date. After the first increment is completed, based on how the increment
was accomplished, subsequent delivery dates for other increments would be defined.

www.it-ebooks.info

http://www.it-ebooks.info/

Agile Works Best

[108]

XP design
The XP design follows the KISS (keep it simple & smart) principle. Simple design
techniques, such as CRC (Class, Repository, and Collaboration) cards can be
used to initiate the design. CRC cards are a brainstorming tool used to design the
object-oriented software. They are used to write down the information on classes
in the object-oriented system, and can help to keep the complexity of the design at
a minimum. However, the final design should be in the code. Therefore, conscious
effort is made to use the code for design. PHP is ideal for this purpose. For difficult
design problems, prototypes could be developed with PHP, which can be depicted as
spike solutions to help better understand the user problems and come up with better
design solutions.

One of the challenges of going into the PHP code for design is that the initial code that
we write will lead to problems with respect to the ideal design and implementation.
The solution is to encourage refactoring the PHP code. The iterative refinement of the
internal program design will lead to perfection of the design over time.

XP coding
In the XP approach, it is recommended to construct unit tests before the coding
commences. This ensures that we can test as soon as the code is available. The other
key advantage is that by looking into unit testing before the real implementation,
we can make sure that we cover all the edge cases in the implementation, thereby
leaving little room for bugs. This model also enforces simplicity because instead of
worrying about making the code overly complex, the tests are written first and then
the minimal code is written to cover only those test cases.

The concept of pair programming is one of the most popular aspects that XP is
well known for. Based on the concept of 'two minds are better than one', a pair of
programmers, rather than one, will work on a single piece of code. One will look
over the shoulder of the other while the other one attends the code. This practice, as
you might know by experience, ensures that we make the code better on the spot.
Over time, due to the number of bugs being eliminated, thanks to this practice, the
employment of two resources to write one module pays off.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[109]

The approach for choosing pairs is again up to the team. For PHP projects,
we can get members from the same sub-team to pair up or members from different
sub-teams to pair up. For example, two people form the presentation layer could work
on a presentation aspect. Alternatively, one from the business layer can pair up with
one from the presentation layer. If different sub-team members are paired up, it will
ease integration pains in the PHP project, and the cross-domain know-how will also
enhance among the team. As we saw at the end of the previous chapter, business layer
implementation needs to wait until the data layer is available, and the presentation
layer needs to wait for the business layer. This opens up the opportunity for pairing
across the sub-teams so that presentation layer team will not need to wait idle until
the people in business layer complete their task. We can use the idle time for the
betterment of the overall project by means of paring up.

XP testing
The approach for testing in XP is based on 'test early and often'. All unit tests are
executed daily. This will expose regression and shortcomings in the design.

Acceptance tests are defined by the customer and are executed to assess the
customer-visible functionality. The project's team will help the users to define those
tests. It is almost as if the customer will do system testing, which will convince the
customer on system quality and its readiness to be deployed into production.

Advantages of agile development process
An agile development process can deliver successful systems quickly. Users will
perceive the systems to be of high quality, and will make real use of those systems for
the betterment of the business. Agile software engineering development guidelines
stresses on on-time delivery of the operational software that will increment above
generating analysis and design documents.

Agile development focuses on continuous communication and collaboration
among developers and customers. This too contributes to quality. Agile software
engineering embraces a philosophy that encourages customer satisfaction, and
communication is the key to understand what they want. Incremental software
delivery also contributes to user satisfaction because they get to see the system and
evaluate if that is really what they want at the earliest, and provide feedback if that
is not what they want.

www.it-ebooks.info

http://www.it-ebooks.info/

Agile Works Best

[110]

Team agility
An agile team is able to respond to changes during project development. This is
because agile development recognizes the need for the project's plans to be flexible.
Changing something that one has developed over many weeks, if not months, is
a pain. But changing something written in PHP is comparatively trouble free. For
example, if you take a compiled programming language, such as Java or C, it takes
considerable efforts to compile and run the system, before the changes are verified to
not have any side effects. But with PHP, there is no compilation, therefore changing
and testing is comparatively easier. Therefore, there is no need to panic at all about
the need to change the implementation.

Attitudes of the individuals matter, both at the personal level and at the team
level. All team members, irrespective of their personal traits, need to be willing
to communicate with all others in the team. Not only communicating what you
think and what you want, but also understanding what others want and think
must be paid due attention. Effective communication includes effective listening
and the willingness to open the minds to conflicting view points. To facilitate
this, team structures and attitudes need to be nurtured and evolved. When it
comes to communication, it should always be remembered that developers, as
well as the customers, are a part of the same team. There is nothing to hide from
the users because the system is for the users. This is where the open source style
of development can help a great deal, where the developers discuss the design
decisions on an open-mailing list and the stakeholders, such as users can voice their
opinion openly. Everyone becomes a part of the system that is being developed.

The traditional thinking is that users use what developers develop, and that leads
to the separation and division between customers and developers. Agile looks to
eliminate this user and developer gap because the developers develop what the
users want.

Note that we mentioned the need to deliver the software in incremental phases.
However, it must be emphasized here that the rapid delivery of operational software
is very important. The iterations are not intermediate work products. Rather, they
are parts of the final system that the users can use in the real business environment.
In other words, deliver the client-usable software, instead of functional prototypes,
as soon as possible.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[111]

Agile process models
We have discussed Extreme Programming earlier, as it is the most widely used agile
process. In the following sections, we will discuss some additional agile process
models that are in use.

Adaptive Software Development
The philosophy driving Adaptive Software Development (ASD) is that
self-organization arises when independent members in a team cooperate to create
a solution to a problem that is beyond the capability of any individual member.

Adaptive cycle is mission-driven, component-based, iterative, time-boxed, risk driven,
and change-tolerant. Mission driven means that the team defines the objectives
to be achieved through the process, and take up the project as a mission that must
be accomplished. The system is defined as a set of components. In the case of PHP
projects, each layer can have one or more components. Each iteration of the project will
be time-boxed, meaning that we will come up with a well-defined schedule. Moreover,
each iteration will have a well-defined time frame within which that iteration will
be delivered. Throughout the project's life cycle, the project's team will watch out for
possible risks and keep open the doors for changes. Risks can be successfully dealt
with and mitigated, thanks to the change-tolerant approach of the project's team. Risk-
driven planning allows us to be adaptive in the future iteration cycles.

Collaboration in ASD requires teamwork from a jelled team. The preferred
requirements-gathering approach is a joint application development. In other words,
prototyping is used for requirements gathering and requirements verification.

This process model facilitates team learning throughout the project's life cycle. First,
the components are implemented and tested, and then the focus groups provide
feedback. Focus groups are those sets of users who are involved and interested in
that particular set of components and features that they encapsulate. This allows
both users and developers to learn. Users learn what they are going to get, and how
the system would look and feel when implemented for real using PHP. Developers
can learn from the users what they really wanted and what the development team
actually delivered. The development team can learn from what they did right as well
as from what they did wrong, with respect to meeting user requirements. The formal
technical reviews, as well as analyzing the success or failure of process iteration life
cycles, contribute to team learning. The next time around, either in the next iteration,
or in the next project, the probability of the team doing much better is very high.

www.it-ebooks.info

http://www.it-ebooks.info/

Agile Works Best

[112]

Dynamic Systems Development Method
Dynamic Systems Development Method (DSDM) provides a framework for
building and maintaining systems, meet tight time constraints, using incremental
prototyping in a controlled environment. The guiding principle used in this process
is the Pareto principle. This states that 80% of a project can be delivered using 20% of
the time and effort that is required to deliver the entire project.

Each increment only delivers enough functionality to move to the next increment.
Time boxes are used to fix the time and resources to determine how much
functionality will be delivered in each increment.

Dynamic Systems Development Method's life cycle
Let's have a look at the Dynamic Systems Development Method's life cycle:

1. Feasibility study: This phase establishes the requirements and constraints
for the project.

2. Business study: The objective of this phase is to establish functional and
information requirements that are needed to provide business value. In a
PHP project, with MVC pattern, this phase will identify the data model and
the business logic model.

3. Functional model iteration: Functional model iterations produce a set
of incremental prototypes to demonstrate functionality to the customer.
Those prototypes also set the platform for user feedback.

4. Design and build iteration: In this iteration, the prototypes are revisited to
ensure that they provide business value for end users. This can happen in
parallel with functional model iteration that is based on the user feedback.

5. Implementation: The outcome of this latest iteration can be placed in an
operational environment because it produces the final product, evolving
prototypes into the final product, incorporating user feedback, and filling
in technical gaps.

Scrum
The Scrum process focuses on small working teams that are used to maximize
communication and minimize overhead. The process is adaptable to both technical
and business challenges to ensure that the best product is produced. The process
yields frequent increments that can be inspected, adjusted, tested, documented,
and built on.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[113]

People performing development work are partitioned into clean, low coupling
segments. This ensures that each partition, or sub-team, can work on their part,
independent of each other. We need to carefully partition the work for the sub-teams
so that there is less overlapping. The MVC based partitioning that we discussed in
the previous chapters is a good model to achieve this.

Testing and documentation is performed as the product is built as a part of the
development work. This ensures that not only the code, but the tests and documents
are also available. Thus ensuring that the product that is being developed is
completely developed. Often, it is the case that code will be the first thing that the
development team focuses, and at the end, it will only be the code that is available.
At that time, if we try to develop tests and documents, the chances of missing
elements are high, as even the team members who wrote the code might have
forgotten what exactly they themselves did. Therefore, it is always a good idea to
perform testing and documentation as we go along.

The other key characteristic of the Scrum process is the ability to declare that the
product is done whenever required. Constant focus is on the working software and
the division of work items into working subsets. All of the working partitions, when
put together, form the working software.

Backlog
Scrum uses the concept of a backlog to maintain the prioritized list of requirements
or features that provide business value to customer. The items are attended to, based
on the priority. Items can be added at any time and their priorities can be changed
based on the customer's demand.

Sprints
Sprint, in the context of Scrum, is the work units required to achieve one of the
backlog items. These work units must fit into a predefined time box, meaning that
the Sprint must be completed within a predefined time period. The backlog items
that are affected due to a higher priority backlog items are frozen to make way for
highest priority items in the list.

www.it-ebooks.info

http://www.it-ebooks.info/

Agile Works Best

[114]

Scrum meetings
Scrum meetings are intended to check the health of the process and the product.
These are daily meetings of 15 minutes to discuss the following:

•	 What was done since last meeting?
•	 What obstacles were encountered?
•	 What will be done by the next meeting?

Demos
Demos, in the context of the Scrum process, deliver a software increment to customer
for evaluation. Based on the feedback given by the customer, backlog items and their
priorities will be updated and the next Sprints will be scheduled.

Feature Driven Development
As in most of the other agile style process models, Feature Driven Development
emphasizes collaboration among team members. The complexity of the project
is handled by using feature-based decomposition of the problem, followed by
the integration of software increments. The technical communication is done
using verbal, graphical, and textual means. Software quality is assured by using
incremental development, design and code inspections, metric collections, and
use of patterns in all areas, such as analysis, design, and construction.

In FDD, we develop an overall model that contains a set of classes that depicts
the business model of the application that is to be built.

Then, based on this model, a features list is built. Features are categorized and
prioritized and then work is broken up into two week chunks.

The project planning is then done by feature. Features are assessed based on
priority, effort, technical issues, and schedule dependencies.

Design is also done based on each feature. Classes relevant to a feature are chosen
first, and then class and method logics are written. An owner is assigned to each
class. That owner is responsible for maintaining the design document for his or her
own work packages.

The build system is also based on each feature. The class owner translates the design
into source code and performs unit testing, and the integration is performed by a
team leader.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[115]

Agile Modeling
Agile Modeling (AM) is a practice-based methodology for effective modeling and
documentation of software systems in a light-weight manner.

Modeling is based on a set of guiding principles. First, modeling will be done with
a purpose. Multiple design models are used to capture different perspectives. Out
of the multiple models, only models with a long-term value are retained.

It is important to note that the model content is more important than the model
representation. In the modeling process, it is important to get to know the models
and tools that we use to create the models.

In the requirements gathering and analysis modeling phases, we need to work
collaboratively with the customer to find out what the customer wants to do with
the system. To ensure this occurs, once the requirements model is built, collaborative
analysis modeling continues with the customer.

Architectural modeling derives a preliminary architecture from the analysis model.
An architectural model must be real for the user's environment. Also, it must be
understandable by developers because they should ensure that key characteristics
of the model are preserved while constructing the system.

Agile for the PHP team
Now that we have a good understanding on the agile principle, let us discuss how
the PHP team can benefit from the application of agile principles.

Pair programming
Pair programming will help in improving team bonding, team interaction, and will
help each team member to uplift their standard. We can use all of the principles of
pair programming that we discussed under the heading Extreme Programming (XP).

Body language is important, therefore, they should sit side by side so that both
partners of the pair feel comfortable.

The PHP code should be written while conversing with each other. Rather than
criticizing each other, the pair needs to collaborate. They need to discuss the
strengths and weaknesses of the PHP constructs used, conventions and guidelines
followed, and the libraries and APIs used. The pair should focus on the elegance,
efficiency, performance, and readability of the PHP code that they produce.

www.it-ebooks.info

http://www.it-ebooks.info/

Agile Works Best

[116]

There are two roles that must be performed in a pair. The first role is the one who
is at the keyboard and the other role is the one who looks at the PHP code that
is written by the keyboard owner. The one without the keyboard has more time
to think, and therefore will generate more ideas than the one with the key board.
Over time, to avoid friction, it will be a good idea to switch these two roles too, on a
regular basis. This will allow both members to have ample time to think as well as to
work, so they can equally contribute with their brilliant ideas to the work at hand.

It is a common question to ask if it is worthwhile to spend two people to do the
work that can be done by one. Note that it is not really true to say that two people
are doing the work of one person in pair programming. Coding is not the most
important part of the project. It is writing the right PHP code that syncs up with
the correct design that is most important. In pair programming, while one is
writing PHP code, the other is thinking ahead, looking for potential problems and
corner cases. This will reduce bugs, increase system quality, and increase system
acceptance by the end users.

Sustainable working style
Team members should work with passion and energy on the project. To make sure
that the team members continue to work energetically, they need to have a room to
recharge themselves on a daily basis. If this is not done, the team will not be able to
work on the project with the same level of energy at all times. They will tear up, thus
hindering the project's success towards the end of the project's life cycle.

To sustain the team's energy, the team needs to re-energize themselves. They should
go home on time, take a break, take some time off from work, and spend time with
family and friends.

If any team member is sick, they should be encouraged to stay at home. It is not
productive for someone to work when they are sick. Going to work while suffering
from an illness increases the risk of making other people in the team sick.

While at work, when team members feel tired, they should take a break. When team
members make more mistakes than progress, then it is a clear indication that the
folks are tired, and they should take a break. It is a good idea to have some coffee
or tea, have some chit-chat, watch some TV, or play a game. Yes, you should have
facilities in the office to facilitate those activities. It is not a good idea to only have
a book shelf with some PHP books in the recreation area. There should be some
activities that the team can enjoy.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[117]

Information-driven workspace
All members of the team should be sensitive to the current status of the project.
Wandering around the work area should provide ample information about what
is going on with the project. There should be enough white boards to capture ideas
around the workspace. Rather than worrying about the neatness and beauty of the
drawn diagrams, it is more important to have the ideas captured then and there.
Therefore, it is perfectly fine to hand-draw the design diagrams and charts. There
should be no rush to computerize the stuff. We can always use digital cameras to
capture the white boards and can transfer them as notes to the computer.

For a healthy project, everyone on the team should have free and ready access to
the information. Rather than looking and trying to understand the design, team
members should be able to sense the design and reinforce that within the workspace,
as they do their day to day work.

Simple charts can help to feed information into the team, and can help to evaluate,
and thereby reinforce, the health of the project.

Some simple charts that can help you to improve the process include the following:

•	 Amount of pairing, as percentages, where people were working in pairs
versus where people were working alone. This chart can help us to evaluate
if we really use pair programming.

•	 Paring combinations, showing who pared with whom over a period of time.
These can help us to evaluate our effectiveness of paring.

•	 Tests per second, showing how many tests were executed over a day. Also,
showing in how many tests we passed (versus failed). This helps us to gauge
our coding quality.

•	 Tracking the time to fix the found issues and the number of issues opened
versus number of issues resolved. Continuously tracking the number of
outstanding issues. This will help us understand the efforts required to solve
the problems along with our ability to solve the problems quickly.

Fixing the process
Things will go wrong. Mistakes will happen. We need to learn lessons from them
and move on. To fix those problems and prevent them in the future, we need to
understand those problems, and especially why they happened. Root-cause analysis
helps us in understanding the problems and figuring out the way to fix them in the
way we work so that things don't go wrong again.

www.it-ebooks.info

http://www.it-ebooks.info/

Agile Works Best

[118]

Also, in root-cause analysis, collaboration can help us in dealing with fixing issues
in the process. We can share our conclusions and reasoning with each other, and can
get everyone's perspective to ensure that we reach the best possible decisions to fix
the process.

Sitting together
To collaborate among the team members in an effective manner, it is a good idea
to sit together. Sitting together facilitates rapid and accurate communication. This
means everyone, including the experts in design, business, programming, and
testing, sits together. In this way, you have more opportunity to communicate clearly
with each other, you also have the opportunity to learn from each other.

Sitting together reduces time to solve the problems drastically. You just turn around
and ask someone who knows the subject. It also encourages you to ask for help, and
you can get help when you need the most because there is no need to postpone.

It is not a good idea to ask the team members to sit with each other, against their will.
However at the same time, the setup and layout of the work area should encourage
people to sit together. The free flow of communication will not be encouraged if
the workspace was arranged in such a manner that people were confined to their
personal cubicles. At least have some common working areas so that people can sit
comfortably and work with the other people, as and when they want.

One of the arguments against sitting together would be the background noise.
However, over a period of time, people will realize that the energy of the project's
team is flowing across the room. Thus, they will get used to the new model of
working in a shared workspace. On the other hand, if the need for privacy arises for
some activities like, meetings or calls, meeting rooms could be used for those things.

Remember, it is important to ask more questions, rather than having the team
members or pairs trying to guess the things for themselves.

Ubiquitous language
When we develop software for business domains, we need to be able to
communicate what we do, what others want, what the system is all about,
and so on, to non-programmers and programmers.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[119]

Often, we are good at explaining the technical aspects related to the software and
to the use of programmer's jargon. We are also capable of understanding what
others tell us on the software and on the use of programmer's jargon. However, the
challenge is to explain the system and what we are doing for non-programmers, and
remember that system users are non-programmers. The idea is not to eliminate the
use of technical terms, but rather to make sure that others also understand what we
are talking about. The language that we use to describe things should be as close as
possible to the real world domain (where the software is to be used).

Ubiquitous language reduces the risk of miscommunication among team members
as well as between the team and the users. And note that even the PHP code that
we write should reflect this language. Therefore, the function names, class names,
and the names of the variables that we use should reflect this. Also, the language
that we use should be in sync with the jargon used in the data and business models
that we developed.

Stand-up meetings
It is important to know what others are doing in the team on a regular basis. It is
always a good practice to eliminate the need for assumptions with respect to the
rest of the team. When someone is stuck, others will be able to help because others
have already gotten over that hurdle. That way, we can save tons of time, rather
reinventing the wheel.

Stand-up meetings are about people interaction and participation. It needs to feel
open and free. Therefore, it is important to do that in an open area, rather than
around a cramped area. The environment should set the feeling for energetic and
comfortable discussion.

It is not required to wait for the stand-up meeting to start the day. However, it is
useful to start the day with the stand-up meeting. Moreover, the meeting should
be short and sweet. As short as thirty seconds of speaking time (per person)
is recommended.

The points to discuss should be crisp and clear. What did each team member do
yesterday, what each member will be doing today, and what are the hurdles, if there
are any. Moreover, pairs should also be picked, based on past experiences that other
members have, to overcome hurdles found on a given day.

www.it-ebooks.info

http://www.it-ebooks.info/

Agile Works Best

[120]

Irrespective of the fact that there is benefit in having stand-up meetings, it should not
be taken as an excuse for one not to raise problems. If a pair hits a road block in the
middle of the day, they should not wait until the next morning's stand-up meeting
to communicate about it to the rest of the team. Communicate issues as soon as the
issues surface, irrespective of the fact that there will be a meeting the next morning.
This is because others in the team might need to discard some work due to the issue,
as they didn't know that earlier.

Demonstrate the iteration outcome
Until the product is run for real, we cannot be sure if it will run and solve the
problems that we actually have in our hand.

We can conduct weekly iteration demos to ensure that we have a running product
on a regular basis. This would cut down on integration pains by a great deal. It
also makes the team honest. They will admit to the breaks and bugs in the code or
weaknesses in the design. It is important that the team has an open mind regarding
the issues in the product that they develop.

The team needs to be honest with the problems and with the way they handle those
with the stakeholders. This will ensure that we build trust with stakeholders. If the
stakeholders lose their trust in the team, then that will not help the project in the
long run.

Weekly deployment of the product in the real deployment environment will help
the team realize the real issues.

Summary
In this chapter, we discussed the concepts related to the agile development practices
in detail. Agile practices help us to deliver software that will maximize business
value of the systems that we develop for the customers.

Agile philosophy confronts many traditional software practices. This is done to
ensure that we can deliver software that is working and reliable, in a faster and
more effective manner.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[121]

Self-organizing the teams, where each member takes the initiative and responsibility
to deliver, is recommended. The working software is at the heart of the agile
processes. These teams need to collaborate among themselves, as well as with
the system users, to ensure that the delivered software meets expectations. Short
delivery cycles, regular increments, regular demos, and deployment of the software
being developed are important traits of the agile processes.

We can use PHP effectively to capture the requirements in the initial phases. This
can be done using PHP as an effective means of building prototypes to capture the
users' feedback. PHP programmers can pair up to minimize the possibility of bugs,
and to increase the design and code quality. Different perspectives brought in by the
various team members and the users will ensure that we get the product right.

Several flavors of agile processes were discussed in this chapter. This was done
to help you understand the various means of adopting agile concepts to the PHP
project on which you are working. Rather than just playing by the rules, it is ideal
to try and evolve the current process to suite the project needs in an evolutionary
manner. A team will not be able to go agile over night. However, slow and steady
adoption of agile principles can win the challenge.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Ways of Collaboration
In the previous two chapters, while discussing process models and agile principles,
the importance of collaboration has been stressed. In this chapter, we will be
exploring the meaning of collaboration among team members, and the concepts
and tools related to collaboration and communication.

Communication among team members prevents assumptions and conflicting work
that is needed for the project's success. When multiple people are working on the same
module or related modules, we need to ensure that the dependencies and inter-related
work are managed properly. Information dissemination is a key requirement and
should be done in such a manner that prevents assumptions and ambiguity. The team
should be capable of achieving synergy with respect to the final product.

Source code is the means for achieving the final product in software projects.
Therefore, source control is a must. Collective code ownership helps a team to ensure
efficiencies in the development process. However, if source code control is taken for
granted in a shared source environment, it will eventually lead to chaos. When a
team of people work on the source code, you need some level of discipline to make
sure that the code remains stable. You also need the help of tools to maintain that
discipline throughout the project's life cycle.

No matter how much we try, we will not be able to write a bug-free code. Developers
are human beings, and all humans are fallible. The problem is not the existence
of bugs, but rather the way we approach them and tackle them. Similar to source
control, dealing with bugs needs discipline to ensure that we effectively tackle the
problems that we find in the source code.

www.it-ebooks.info

http://www.it-ebooks.info/

Ways of Collaboration

[124]

When the software product is first developed, we will be thinking of it as a single
product. However, over time, new modules would get added and not everyone will
use all of the available modules. In different deployments of the same product, there
will be different configurations. Therefore, in our PHP project, we should take steps
to ensure that we manage multiple configurations effectively so that we are better off
improving, upgrading, and fixing a given configuration at a given time.

Nowadays, there is a multitude of tools around to help the PHP team of developers to
collaborate effectively. This is either amongst themselves or with other stakeholders
of the project, such as users. Success of the team will depend on the selection of the
correct set of tools and the effective use of those tools.

In this chapter, we will be covering the following:

• Challenges faced while working with teams
• Implications of assumptions made by team members
• Ensuring seamless integration
• Source control
• Bug control
• Configuration management
• Tools for communication and collaboration

It is not the tools that matter, but the way in which we use those tools
that determines a project's success.

Team work is challenging
It is challenging to work with a team. Putting together some smart people in a room
will not deliver the results that we wish. The team members need to work with each
other and organize themselves together for the team to operate as a single unit.

When a number of people are working together in a team, there can be situations
where some people will need to work on the same component. Especially with
pair programming, not only the pairs switch, but the components can also switch.
Sub-components, that is, the independent parts of the same component, will be
assigned to different members in the team to ensure parallelism to shorten the
iteration lifetime. Thus, collaboration is a must.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[125]

Team members make assumptions
When team members are working on the PHP code, they might happen to make
their own assumptions about what others are doing and what others might do. These
assumptions are made unconsciously and team members will not even think of them
as assumptions at times. However, they might lead to project iteration delays and
sometimes can even be the root cause of a project's failure.

Lack of communication is the breeding ground for assumptions. When team
members do not communicate enough, others are forced to move ahead with
what they think others might do. When multiple parties make such assumptions,
the chances are that those might drastically deviate from reality and can lead to
crisis situations. For example, some members could need to throw away what they
have done because others have already done it. Or some work might need to be
redone because the work done so far does not seem to integrate with what others
have done. Yet, some simple communication on the fact that someone is working
on an algorithm or an API, or the fact that an assumption is going to be made on
something, or just making some noise on what one might be going to do with respect
to a design, would enlighten others on what is going on. From the previous chapter,
it is clear that the stand up meetings are intended to do this kind of communication.
We can also use a mailing list or a forum to do the same.

When using PHP libraries and APIs, there are so many alternative ways of doing the
same thing. Communication and collaboration can help us ensure that we use the
best alternatives for the kind of software application that we are developing. The pair
programming can make sure that people share know-how and best practices with
respect to using PHP, and discuss the alternatives to reach to the optimum solution.

The informative workspace that lets anyone know what is going on with the project
also helps with making sure incorrect assumptions are not made. When information
is flowing around, there is no need and no room for assumptions.

When team members are working on, say PHP code that implements the user
interface layer, they need to have a look at the data model or the business model. It
should be easy to find where those are. Sometimes the models are there, but very few
know how to locate them into the project, especially when the team is busy with PHP
code. Sometimes the modeling was done on white boards and wiped out, assuming
those are pictured in the minds of the people involved. But the reality is that people
forget. Even worse, they may think that they remember, but they might have
forgotten one small, but important detail. Thus, it is best to capture and store them in
an easily accessible manner. An image of the white board would do. All in the team
should be able to know how to access it when the need arises. There can be a central
location, a one stop, where the team members visit. This can help them to locate the
images they are looking for, which have the design models.

www.it-ebooks.info

http://www.it-ebooks.info/

Ways of Collaboration

[126]

Making integration possible
It is the general feeling that integrating different modules developed by various
team members is a technical issue. However, it is a technical issue as well as a
collaboration issue. For example, say we discussed the PHP library for some
functionality required by the project with a third party and we missed the point for
discussing what version should be used. Two of the team members who need to use
this library go ahead and use it for their part of the project. One team member uses
an older version of the library that he had downloaded on his machine, not knowing
that it is not the latest version, and the other one downloads the latest version and
uses it. However, when it comes to the integration phase, the team realizes that
two versions of the library have different APIs or bugs, and the two team members
have used elements of the library that are not common to both the versions. Lots of
time and energy is wasted, as not only some work needs to be discarded, but also,
people's morale goes down. How can we have prevented these sorts of frustrating
situations? Some simple form of communication could have saved a lot of time. Say,
a simple email mentioning that I am going to use this version. In a more systematic
model, people can see a shared document that mentions the versions of the third
party PHP libraries that are to be used for the project.

The other key aspect to keep in mind is that other members of the team are also
stakeholders of the PHP code that you are developing. Often, this is well understood
when it comes to data and business layers. However, it is also true at the user
interface layer. As the user interface layer is built on top of the other two layers
in a PHP project, it is common thinking that the user interface needs to consume
the other layer, but no communication is required. But top-down and bottom-up
communication is going to benefit the project. Those who work on the business logic
layer and data layer needs to understand the nature and format of the presentation
layer, what the users expect, and what the users' needs are. It is a fact that user
expectations are evaluated while coming up with the data model and business
model. However, note that they are done too early in the project iterations. It is at
the depth of the project that we really get to see the real needs of the user. Moreover,
it is with the user interface that we realize the expectations of the users. Therefore,
unless the design is perfect, there are chances that we need to fine tune the system
design at this stage. Anyone who has a bit of experience with software knows that it
is virtually impossible to make a design perfect. Therefore, communication in either
direction will make the product perfect and ensure project's success.

It is hard to make a team work if the team does not move along flawlessly. If there
are hidden feelings about technical differences, it is hard to look in the eyes and be
open about what is being said. If there are hidden feelings, it is not easy to get the
real information out from individuals. Therefore, if the team is having difficulties,
it will be worthwhile to consider some team building activities to help cultivate
understanding and bonding.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[127]

Sometimes, we as human beings can hold so much complex information in our
mind. However, over time, we tend to forget. When making integration happen, we
need to have all of the information easily within reach. It is worth taking some time
to record some of the things that we have in our minds. This can be done for the
benefit of others so that when it is needed the most, they can access the information
and move on, rather than getting stuck. Documentation, as it is well known in the
software field, is a great way to capture the information of interest on the software
system. People often concentrate on user documentation, but it is also important to
have some form of design documentation as well, at least in the form of comments
in the source code itself.

Integration is tough work and people can be pressured at times. Frustrations creep
in when things do not work as they were expected to. Therefore, it is important to
have some patience on the part of every one. Moreover, it keeps the minds open so
that misunderstandings are kept away. It is much more important to keep your cool,
rather than worrying about getting things done, because losing the cool will not get
anyone anywhere.

Source control
When a team of people work together on a single project, we need to be able to make
each other's code available to each other. There are various reasons for sharing the
source code.

One key reason to share the source code is to make sure that others see the changes
and improvements done to the APIs. For example, if the business layer sub-team
optimized the business logic layer API, they would want to let the user interface
sub-team know about this as soon as possible. The most efficient way of doing
this is to commit the new changes to the shared source code repository and let the
interested parties know over the desk, or by using some communication tool, such
as instant messaging or a phone call.

The other important aspect of having PHP code of the project in a shared repository
is the ability to have a look at any part of the code by anyone, whenever they wish.
Note that PHP code is the most reliable form of documentation of the project.
Therefore, if anyone is interested in any aspect of the code, the PHP code should be
available in a shared repository and not only on individual team members' machines.

There are many source control solutions out there—Subversion
(http://www. subversion.tigris.org/) and CVS (http://www.nongnu.org/
cvs/) are the two most well known solutions in this space. Subversion is the most
used source control system these days. It was invented as the successor for CVS to
overcome some of the problems and difficulties faced by developers.

www.it-ebooks.info

http://www.it-ebooks.info/

Ways of Collaboration

[128]

Though the detailed commands used by various source control solutions vary, the
concepts are common. Developers can check out the source code from the repository
into their machines. They can make changes locally, and then can check the changes
back onto the repository. Developers can check the difference between their local
copies and the source code repository. They can also maintain different versions of
the same source code.

It is common to use the terms trunk, branch, and tag with a source repository. The
trunk usually contains the latest, bleeding source code. That is the place where active
development takes place for a release or iteration. When the work for that release
or iteration is deemed to be complete, a branch can be created. Once the branch is
created, up until the release, changes required for the release, such as bug fixes can
go into the branch, instead of the trunk. The risk of this model is that programmers
generally forgets to merge bug fixes with the trunk. Therefore, all of the fixes done on
the release branch should be ported to the trunk. The reason for not using the trunk
for a release is that there can be some team members that do active development on
the trunk. Therefore, the chances of the trunk becoming unstable are high.

When the branch comes to a stable state and the team decides that the release can
be done, the branch can be tagged. The tag will indicate at which point in time,
and with what PHP code, the release was done. The reason for tagging is that it is
possible that in the future a new release could be done using a branch. If multiple
releases are done from the same branch, we will be fixing at least a few bugs in the
branch before each release. The tags at the point of release will help the team to
locate the exact PHP source that was used for a given release if they wanted to find
that in the future. Tags are meant to be static, fix point snapshots that are created
at a certain point in time. A snapshot is read-only, meaning that its state should
never be changed, unlike branches that are subject to change with the bug fixes and
customizations done on them. Consider the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[129]

The preceding screenshot shows how the trunk, branches, and tags are organized in
a Subversion source repository.

There are command line tools and graphical tools that can be used to deal with
various source control systems. Based on the developer preferences, they can choose
whatever tools they wish to.

To improve the overall team productivity, it is a good practice to recommend some
common set of tools that the entire team uses. This will cut down the complexities
when they try to fix problems with respect to the source repository. It will also be a
good idea to have consensus on the features of the source control system that are to
be used within the team.

If more than one person changes the same source, there are chances that when they
commit the changes to the repository, the code could have conflicts. Source code
control systems are capable of pointing out the conflicts and will force developers
to resolve them. In order to resolve their conflict, they might need to sit together
to figure out the root causes of the problem. It will help if they use the same tools
to work with the common repository and figure out the conflicts by discussing the
changes each person has done against the original code that they started with.

When we work on a particular branch and fix bugs in there, we might want to merge
those with the trunk so that those bugs do not reappear in the future. The harder
way of doing it is to commit the changes manually to both, the branch and trunk.
However, most source control systems support the merge command that help you
to merge the changes done on one location to another having the same source code.

It should also be noted that source control is often integrated with the IDEs. People
can have their own preference regarding the IDE they use. However, it will help
them all to have source control integrated to the IDE to improve their productivity.

When working with a team where the PHP code is shared using a commonly shared
code repository, it will always be advisable to commit the changes done to the source
code, then and there, to the common source code repository. Keeping the changes in
an individual's local machine for too long will result in too many source conflicts by
the time the individual checks them. That will also result in wide system breaks. The
best practice is to commit all of the changes and improvements, as well as all new
code, early and often to the common source repository. However, a good advice is
to commit conceptual blocks of code, rather than in unrelated pieces. Never make a
single commit that touches multiple modules or unrelated files, as we should be able
to browse the commits as distinct entities. Also, never commit code that might have
test failures or is not working. All developers must ensure that all code in the source
code repository works for all team members all of the time.

www.it-ebooks.info

http://www.it-ebooks.info/

Ways of Collaboration

[130]

Avoiding big bang changes on the PHP code is a very important principle. We
should minimize surprises to other developers at all costs. Apart from causing
surprises to the others, big bang changes also lead to bad design and quality
problems. When something is written with PHP, it is good practice to develop it to
some working state and commit that into the common repository without trying to
make it perfect at the first effort. This will allow others to have a peak into the new
source. Also, those who want to use it can give it a try and provide some feedback.

Note that, like emails, forums, and documents, PHP source code is a strong means
of communication. In fact, PHP code is the best form of communication, as it is the
most reliable form of documentation. When we develop an API, we are opening up
a channel for others to use our logic. Therefore, the API needs to be self-descriptive
and should have some API documentation in the source code itself. Moreover, when
you use a common PHP code repository for the entire team, the power of source
code, as a means of communication grows stronger. We can configure the source
control system to send email alerts on the code changes that are committed by the
developers to a mailing list. All team members can review it. This facilitates making
the code the real basis of team reviews and discussions on the solution.

Bug control
As in the case of source control, the PHP project's team must use a bug tracking
system (some also call it an issue tracking system) to keep track of bugs. As in the
case of a source code repository, the bug tracking system will help the PHP project's
team to achieve synergy around their activities, and around the bug tracking system.

There are various reasons to use a bug tracking system for the PHP project. First,
we need to keep track of all of the issues because we tend to forget and miss the
issues that we found. It is a common practice to leave a to-do note in the code itself.
However, tracking these in a bug tracking system, rather than as to-do notes in the
source code has many advantages. For example, we can generate reports on the
issues and sometimes even do project management using bug tracking systems.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[131]

The following screeenshot shows an example report generated with an issue tracking
system that shows the types of issues being raised in the system:

When the developers complete an iteration or a task, they move on to work on
the next activities while the quality assurance team will start testing. The quality
assurance team can use the bug tracking system to record issues, until such time that
a developer would have some time to look into the issues. If the issue is critical (a
show-stopper), we can get the developers to attend to that right away. However, if
the issues are not showstoppers, the team of developers can choose to fix them based
on the priorities of the activities on which they are working now.

www.it-ebooks.info

http://www.it-ebooks.info/

Ways of Collaboration

[132]

The other reason we need a bug tracking system for the PHP project is to make sure
that we can balance out the work load and spread out the team effort when attending
the issues. For example, when a developer has completed the work that has been
assigned to him, he can have a look into the open issues in the bug tracking system.
The developer can assign the issue to himself to indicate that he is working on it and
that others should not spend time on the same.

The bug tracking system can serve as another great platform for developers to
collaborate. Usually, all bug tracking software systems have the facility to add
comments. The developers, testers, and users can collaborate with each other
through the bug tracking system. This is done so that they can educate each other on
the nature of the issue and on the potential solution. When resolving an issue, the
most important aspect is to be able to reproduce the issue. Developers can use the
comments to record information that will help them to reproduce the problem. They
can also provide potential fixes that might lead to the solution, and discuss pros and
cons of the proposed solution. However, in a PHP project, rather than using the bug
tracking system to discuss solutions, it would be far more effective to fix the code in
pairs, right away. However, you will still need to record the bug for future reference.

Each issue in the system will have an associated status, priority, and severity.

The status indicates the current progress with respect to an issue. If the issue is
Open, it means it is available for someone to be picked up and solved. In-Progress
status means that someone is working on the issue, so no one else should worry
about picking it up. The Resolved status means that someone provided a solution to
the issue. Closed means someone verified the solution and the issue is no more. The
set of states forms the life cycle of an issue. The following figure shows the life cycle
of an issue in the issue tracking system:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[133]

Bug Found

Issue Created

Open

Start Work

In-Progress Re-Open
(Fix not Satisfactory)

Fix Issue

Resolved

Fix Verified

Closed

Bug Fixed

As the previous figure portrays, when a bug is found, an issue is created in the issue
tracking system, and the issue will be in Open state. Once a developer starts working
on the issue, the issue will transit to In-progress state. When the developer provides
a fix, the issue is resolved. Then, the fix needs to be verified. If the verification fails,
the issue will be re-opened and will go back to the Open state. If the verification is
passed, the issue can be Closed, which indicates that the bug is fixed.

Priority indicates how soon the issue needs to be attended to. High priority issues
are to be attended before the others.

Severity indicates the gravity of the issue. In other words, severity indicates the
impact of the issue on the system.

Note that, often the difference between the priority and severity of an issue is
confused. Priority means how soon the issue needs to be fixed. Severity means how
serious the issue is. One may argue that high severity issues must be given high
priority. That is not the case always. For example, we might have decided not to ship
a particular feature for the next iteration. Therefore, the issues related to that feature,
irrespective of how severe they are, need not be attended in this iteration. Therefore,
those issues are not high-priority issues.

www.it-ebooks.info

http://www.it-ebooks.info/

Ways of Collaboration

[134]

There are various reasons for bugs to appear in PHP code. The two main reasons are
as follows:

• New code did not properly consider all use cases
• Changing the working code to fix one issue will break another

For both of these, as well as the other cases that cause bugs to appear in PHP code
that we write, testing is the best way to deal with them. Testing can be carried out
after the PHP code is written, but we need to think about how we are going to test
before the code is written. That will force us to ensure that the design and the PHP
code is bug free. To guard against regression, testing helps a great deal. Before one
can finalize the implementation, he or she can run all of the tests available to ensure
that there are no side effects due to the changes done in the code. If we do not have
tests to run, this cannot be achieved.

One way to build a comprehensive set of tests is to write a test for each bug that
appears in the issue tracking system. Each team member who fixes a bug needs to be
encouraged to write a test case that verifies the fix provided. In the long run, we can
use these tests to guard against regression issues.

Over time, the bug tracking system can turn out to contain a great wealth of
knowledge to reflect the success of our process. From the data in the bug tracking
system, we can get to know which layer of our PHP application had the most bugs.
For example, is it the business layer or the presentation layer that troubled us the most?
This data can lead us to the insights, as to what can be done to optimize the process.

Usually, it is the presentation layer that will have most of the issues in a system. It
is because that is what the users see. Even though users may have reported the issue
against the presentation layer, the real issue might be in the data layer or the business
layer. Therefore, we need to have some mechanism to classify the issues raised.

Some issues are not really bugs, but are user errors, and might be solved with better
documentation or better designed user interfaces. Some others are seen as bugs, but
are really new features or improvements. Therefore, only a subset of the issues in the
bug tracking system will be real bugs. The classification of issues will help us to deal
with the real issues without complicating the matters. A very simple classification
will include the following three categories of issues:

• Use error
• New feature or improvement
• Real bug

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[135]

The issue tracking system can help us to analyze trends in development, testing,
and the use of the PHP system that we have developed. Having fewer issues for a
particular feature does not indicate that it is bug free. Maybe what that really means
is that people are not using it, or Quality Assurance team is not testing it properly.
Also, having many bugs on a feature does not mean that it is too buggy. Rather, it
may mean that users are using it more and testers are testing it more.

Trend tracking can also help us to find the productivity, effectiveness, and workload
of the team. For example, we can analyze the following:

• How many issues are assigned to a developer at a given time?
• How many issues were open versus how many issues were closed on a

weekly basis?
• How many issues does a developer fix on a weekly basis?
• How much time, on average, is taken to fix an issue?
• How much time, on average, an issue is in the open state?
• How many long living issues are there in the system?

This sort of trend tracking helps us to improve our process for both, the current and
future projects.

Another aspect related to the bug tracking system is the potential friction that can
arise between parties due to bugs that are being raised. This is because of the kind
of perspective that people will have towards the bugs that are being raised. The test
team will raise bugs, and to do that, they need to use the system in anger. If they do
not, they will not be effective in their job. However, the developers should not see
those issues as fault-finding missions by the test team. Rather, the developers should
accept the existence of the bugs with open mind, and try, fix, and learn from them.

Issue tracking can be combined with source code control. This integration makes it
possible to associate source code revisions with issue IDs. This helps us to keep track
of what code changes were done to fix which issues.

Some of the popular issue tracking software includes Trac
(http://trac.edgewall.org/), Bugzilla (http://www.bugzilla.org/) and JIRA
(http://www.atlassian.com/software/jira/). You can find more information on
various issue tracking systems on this Wikipedia page: http://en.wikipedia.org/
wiki/Comparison_of_issue_tracking_systems.

www.it-ebooks.info

http://www.it-ebooks.info/

Ways of Collaboration

[136]

Configuration management
In the initial stages of a software project, we will have a product that will be installed
and run as one single unit. Over time, we might need to patch some PHP classes and
libraries, install the system on multiple operating systems, and support older and
newer versions of the software that we have developed.

Let us take a simple example. Say that we have three components in our system—the
business logic component, the data processing component, and the user interface
component. Initially, we will build these three components, integrate them together,
and ship the product. After the release, we find that we have way too many bugs in
the user interface component. Thus, we fix those and ship a new version of the
product, but only the user interface component has changed. Now the new release has
a different configuration than the previous release. Consider the following diagram:

Data

Original Release New Release

UI Business

UI (bugs fixed)

The Original Release and the New Release, as shown in the previous figure, are two
different configurations of the software. The Original Release uses the user interface
that was found to be buggy. The New Release has the user interface that includes
bug fixes.

Managing multiple configurations is a problem that any decent software project
needs to deal with. Even though the task might look simple in the initial iterations
of a project, it can become a complex one over time if due attention is not given.

Configuration management can get very complicated and there are books written
which are dedicated to the same. However, for our PHP projects, it is best to keep it
simple and not complicate the matters. To deal with the matter in simple terms, we
first need a basic understanding on why configuration management is required.
Let's take an example to understand the need for configuration management.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[137]

Say, in an earlier iteration, we delivered some subset of functionality to the client.
They are happy with the business logic, but want some user interfaces to be updated.
Moreover, they want the user interface changes to be done immediately. Therefore,
the team decides to do an upgrade of the user interface layer alone, on top of the
business and data layers that have been delivered already. But the complication
is that the team is already half way through to the new iteration, and they have
improved the data, business logic, and the presentation layer to some extent. They
can incorporate the changes requested into this new iteration's PHP code. However,
it will not satisfy the timing requirement that the client has. Therefore, the best
alternative is to update only the presentation PHP logic of the previous iteration's
package. This essentially forces us to deal with the following three configurations:

• The original PHP code of the previous iteration
• The previous iteration's PHP code with presentation improvements
• The new iteration that is being worked on

Why do we need to keep track of all of these three configurations, given that the new
iteration on which we are working is going to replace the older iterations? There are
multiple reasons to keep track of these different configurations.

One key reason is to make sure that we will be able to recreate issues reported
by the user as it is. If the users are using the second configuration and reported a
bug against it, we might not be able to reproduce it in the latest iteration, once it is
delivered. Either the bug might have been fixed or it can be the case that the issue is
no longer applicable. This is because the improvements done in the latest iterations
have wiped out the use case that caused the bug. If the bug was reported against the
exact configuration along with the configuration information, the team members will
be able to figure out the root causes with relative ease.

There can be other complications that arise due to the deployment scenarios. Say that
the user runs the same system in multiple machines for some internal organizational
reasons. Though this might not be the recommended scenario, it can often happen in
reality. Moreover, when an upgraded presentation layer was given, they missed one
of the deployments and did not upgrade it. Now when an issue is reported against
the system that was not upgraded, the team will not be able to fix the issue, as they
are being provided with wrong information. In such a situation, we need to have
mechanisms, such as writing the configuration information to the log file, and ask the
user to provide the log file of the system that caused the problem. This way, we can
collect precise information on the configuration of the system that is in use.

www.it-ebooks.info

http://www.it-ebooks.info/

Ways of Collaboration

[138]

Note that each developer's checking out on their machine is also some kind of
deployment. Often, developers have a shared deployment that they use for internal
testing. We need to allow the developers freedom to have their own deployment
because they need to experiment and research when developing their part of the code,
their own sandbox. However, we also need to ensure that the shared staging server
always works with the contributions done by all of the members of the team from
time to time. Moreover, when it comes to providing a snapshot to the client, we need
to take the snapshot from the staging server. We can come up with a simple shell
script to package a snapshot build on a regular basis and can get an automated set of
tests, including system tests and unit tests to run on this pack to verify its integrity.
Thus, we need to have some organized approach to make all of these deployments
be in sync. Here is one way to achieve this. The developers work on their personal
deployment. They will test all of the changes and upload those changes to the shared
staging server, including the tests for those changes. The shared staging server runs
with the changes contributed by all of the developers. A snapshot build is created out
of the staging server and is tested with the tests contributed by the developers and is
given to client for evaluation.

In order to record the configuration information in a log file, we need to have a
systematic mechanism of specifying the configuration so that we know exactly which
PHP code is running on the given system. The best way to be precise is to use a
numbering system. The usual practice is to use version numbers with major, minor,
and patch numbering.

Major version is incremented when major changes happen to the software package,
which are not backward compatible. These changes include new features and
improvements that were not a part of the previous release.

Minor version is incremented when there are changes and improvements, over
the previous release, but there are no major new features. The changes are mainly
limited to the enhancements of the previous features. Patch version is updated if
the changes are restricted to bug fixes alone.

From the previous example, where we had three configurations of the previous
iteration to current iteration, there needs to be a major version increment. For
example, if the previous iteration was 1.0.0, the current iteration should be 2.0.0.
When the presentation improvements are done to 1.0.0, it is a minor version
increment so that configuration is version 1.1.0. Once 1.1.0 is delivered, if the users
happen to find few issues, and if they requested to fix those immediately, as we are
still busy with 2.0.0, we will fix the issues on 1.1.0 PHP code branch and release
a 1.1.1.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[139]

The important aspect of configuration management with respect to collaboration is
that when communicating with each other on issues, new features, improvements, and
so on, we can use the version number to make sure that we precisely inform the other
party which configuration we are talking about. This will prevent miscommunication
and improve understanding between collaborating parties. The version number tells
an entire story about the configuration in use and is a good example of shorthand
jargon for explaining complex scenarios. For example, it is so precise when someone
says, 'Feature Foo is broken in version 2.1.3', and everyone is clear about what exactly
the PHP source bug is.

Sometimes, code names are used to describe configurations. This is because it is
easier to remember a name, rather than numbers. However, note that the code name
is not an alternative, version number is. Code name just complements the version
number. Irrespective of the fact whether a code name is used or not, the version
number must be used.

It is not sufficient to use the version number to refer to configurations by the
development team alone. We must encourage all of the stakeholders to use
configuration information in all of their communication, especially the users.

When the users raise bugs, they must use the configuration information and mention
the bug that is being raised in the issue tracking system. Thus, bug reporting has a
close relationship to configuration management.

Configuration management also relates to the source control that we discussed
earlier in this chapter. When we create a branch off the source trunk of the PHP code
base, we can use the version number to indicate which configuration the branch
relates to. This way, anyone can very easily locate all of the entire PHP code that is
related to a given configuration. At the point of release, we can use the configuration
version number to name the tag. This ensures that we are conscious about the
configuration that we are going to release. At this point, as well as at the point at
which we are branching, we can question the version number based on the changes
that goes into a release, and decide the right number that indicates the configuration.

www.it-ebooks.info

http://www.it-ebooks.info/

Ways of Collaboration

[140]

Apart from the PHP source code libraries, components, or PHP classes, the
deployment information can also have an impact on the configuration. For example,
whether the source code is deployed on Linux or Microsoft Windows, if the web
server being used is Apache httpd or Microsoft IIS, or if the database being used is
MySQL, Oracle, or MS SQL Server, it will be important configuration information
that will be useful when figuring out root causes of issues and meeting security
or performance aspirations. If the development team uses one deployment
configuration, the test team another, and the client yet another, then that will not
help when trying to replicate the issues that are being reported. Therefore, at least
the test team should have the exact client deployment scenario replicated in-house so
that they will see the problems before the users do. The developers can use the test
team's deployment setup to help replicate issues while fixing them.

Having the configuration information only in the source control system or the issue
tracking system will not help in managing the configuration information in the
long run. We should at least maintain a simple spreadsheet to capture the following
information:

• On what configurations was it done
• On which date was it done
• If we have more than one client, then for which client was it done

Tools for communication and
collaboration
We can use various means for the collaboration of a wide array of channels for
communicating. The best is to use a collection of tools to facilitate robust and
effective communication. At the same time, it must be clear where to find the specific
information by avoiding redundancy among the set of tools. For example, we can use
a mailing list for discussion and each discussion will need to have a resulting change
on a shared web page, such as a Wiki page that summarizes the decisions made.
Without such guidelines, it will take more time to find the necessary information
among many channels available and some of the team members will work with non
up-to-date information.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[141]

One of the earliest and most effective channels of communication is email. Research
teams, developers, users, and many other groups have used email for many years
and it has proven to work for many purposes. Rather than one to one emails, or
copying several people in the email, the best way to use email is to set up some lists.
We can have multiple lists for various purposes. For example, consider the following:

• Developer list: Includes all of the team members
• User list: Includes all users and developers
• Customer list: Includes all of the key stakeholders' from the customer's end,

and the project and organizational leader's from the software organization.
• Leadership list: Includes project leadership

From these, as far as the project's success is concerned, the most important lists are
the Developer list and the User list.

Developers can use the Developer list to discuss matters, such as design, PHP code,
PHP libraries, coding patterns, bugs, and so on.

Users can use the User list to provide feedback, ask questions, voice their opinions,
and get help from the developers. Since all of the developers are also on the user list,
users can get all of the help they want form the developers. The User list can set the
platform for the developers and users to collaborate and build a relationship with
each other.

Use of mailing lists can get tough for some situations, especially when there are
negotiations required, or when some things need to be done fast. Email, as a
communication channel, has some time lag associated with it. Especially given the
fact that the subscribers or recipients will respond to the mails when they feel like it
or when they have some time.

To make it real time, as opposed to asynchronous, as in the case of email, we can use
instant messaging. Moreover, as in the case of email, rather than doing one to one
chats, we can use chat rooms. We can use multiple chat rooms for various groups,
one for developers and one for users with the developers also participating.

The benefit of chat rooms is the fact that they are real time and there is no time lag to
get a response, provided the people are available. But that can also cause problems.
When the developers are busy, and if the users keep on bugging them in the chat
room all of the time, it will hinder productivity.

www.it-ebooks.info

http://www.it-ebooks.info/

Ways of Collaboration

[142]

If there are urgent matters that need to be discussed, and decisions that are to be
made, then neither chat nor email will help. If it is about resolving some conflicting
views on a design, then it will be hard to get all of the team members to agree on
something. This is because email threads can go astray and chat rooms can fill with
noise. The best channels for such scenarios would be to have face-to-face meetings or
a conference call. A call or a meeting is real time, more humane, and helps to reach
decisions on the spot, given that the team stays focused.

When it comes to meetings or calls, sticking to the original purpose and staying
focused is very important. The best way is to define the length of the meeting at
the start and finish within that slot.

With the advent of Web 2.0, there are an array of new tools that can be used to
facilitate communication and collaboration. The so called social media provides
some powerful platforms and tools for effective communication.

One of the first Web 2.0 style tools that has been widely adopted is the concept of
Wiki. The idea is to have a collection of web pages that can be edited with the team
by using a simpler set of syntax to formulate documents. The advantage is that
not only can those documents be found easily, but they can also be edited easily to
correct mistakes. Thus, they add improvements on the fly. For the PHP team, Wikis
can be useful for the following reasons:

• Design documents: We can maintain a single page on which all of the design
related documents, such as how the data model and business model are
linked. Those who want to find them just need to come to this Wiki page.

• Coding conventions: We can document PHP coding styles that are used for
the project in a Wiki and we can improve that as and when needed.

• Process information: Team members need to find information about the
process from time to time. They should be directed to a central page with all
of the process information, and that should link to other Wiki pages that have
all of the process information. Also, when the process needs improvements,
the Wiki provides the means to update it with ease to meet the process' fine
tuning needs of the team.

• Best practices: PHP coding best practices can be documented using Wikis
and fine tuned with the teams' experiences over time.

• Configuration information: A Wiki is a good tool to maintain PHP
source configuration information. It helps to keep all of the configuration
management related information online. Thus, it helps to make sure that
the team will have that information at their fingertips when they are
attending issues.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[143]

• Test plans: Having test plans on a Wiki serves multiple purposes. First,
it helps anyone to locate what the plan is, and second, it allows adding,
modifying, and improving the test plans regularly. In addition to test plans,
we can also keep track of all PHP test cases, where they are stored, and how
to run them.

• Guidelines: Various guidelines instructing the team on how to approach
certain tasks can also be documented with Wikis.

Any PHP project's team need to evolve with time. Not only does the team needs to
be agile, but also, the team needs to have access to agile tools to enable them to be on
that path. The ability to be edited on the fly and update, improve, and upgrade the
content is a great asset of Wikis that enables agility. One may worry that such an easy
approach to edit and change content will lead to chaos. However, as we discussed in
the chapter on agile principles, when the team becomes really agile, they also become
self-organized. You can entrust such a team to do the right thing. Therefore, it is not a
problem, but rather an asset, to have the free edit capability in Wiki.

Wiki sites can be used to capture a wealth of knowledge and can serve as a very
useful and powerful knowledge base for the project's team. It is good practice to keep
the content organized. The Wiki can contribute to the betterment of the informative
workspace. All of the information required in making decisions, finalizing designs,
carrying our testing, verifying code quality, and review activities are supported by
the knowledge captured in the Wiki pages.

Most Wiki software supports automatic versioning. Therefore, if the need arises to
go back to a previous version of a document, or have a peek at the older content to
verify against new content, then that would be facilitated.

When someone asks for information on a mailing list, if that is already captured
in Wiki, then the one with a question can be pointed there. If multiple users keep
on asking the same question repeatedly, then that can be documented in the Wiki
and the users can be pointed there. This saves time and energy on the part of the
developers, as opposed to repeat the same answer over and over again.

Most of the Wiki software also comes with a search facility, so over time, developers
and users will get used to search in Wiki before asking others.

Wikis can be thought of as a means for achieving shared content management.
Therefore, it can be used to write all sorts of documentation, including user-oriented
documentation. If we also allow users to edit the pages, then users can contribute to
the betterment of documentation by fixing trivial typos that they tend to find.

www.it-ebooks.info

http://www.it-ebooks.info/

Ways of Collaboration

[144]

Forums have been around for a while now. It seems that even though email has been
there for a long time, and has been used by teams effectively for a long time, the new
generation of computer users prefer forums to email. This is also partly due to the
popularity of Web 2.0 style applications, such as Facebook.

Forums are quite similar to email lists in nature, that is, they too are asynchronous
and the subscriber can choose to have a look at it when they have time or when they
feel like. We can have a number of forums for various groups, such as developer's
forum and user's forum.

The differences between email lists and forums include the fact that forums are
online with web-based interfaces. Readers will need to visit those pages to gather the
latest information. On the contrary, mailing lists deliver the messages to subscribers'
mailing inbox. While you need to make an effort and visit the forum, the mail is in
the inbox and you can see that while checking on other emails.

White boards are very powerful tools, even in this Web 2.0 era. Unlike the case of
the constrained space on a computer screen, the white board in the center of a team
meeting can be very robust and powerful tool. Though it is two dimensional, when
combined with enthusiastic and energetic team, no other tool might be able to match
the power of a white board.

The white board helps us to keep things simple, yet very effective. The simple
diagrams, charts, and bullet points that are captured with a pen on the white board
can be photographed and stored as they are in a Wiki. They can serve as the design
documentation and historic records of various discussions. The central place used to
store white board images can serve as another form of PHP team's knowledge base.

Tracking tools
Project visibility is an important aspect. Every stakeholder of the PHP project will be
interested in knowing what is going on with the project. We can use various tools to
track the progress of the project.

Earlier, we discussed the use of an issue tracking system to capture bugs in the
system. Many issue tracking tools also come with the facility to track the project's
progress. In other words, issue tracking systems support some elements of project's
management. Not only bugs, but also the new features could create issues and then
can be associated with a version. This way, we can associate the state life cycle that
is used to track the issue's progress with all new features, gauge the progress, and
predict if we will be able to deliver it in time for the next release iteration.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[145]

There are various other tools available to help with time tracking and progress
tracking. Those tools can help a team to see if they are on track for the next iteration
deliveries. When initial estimates are compared with the actual time spent, we can
also measure our ability to estimate a task precisely.

Even though we might be able to deal with estimates that are off the mark for some
time, in the long run, both, the development team as well as the clients and users
will become frustrated with incorrect estimates, especially underestimates. The usual
trend is to underestimate time because humans are usually over confident about
their skills. When the clients become increasingly frustrated with the constant delays
in delivery, and express that to the team then the team, will go on the defense. When
defensive, they will always over estimate the time required with some unreasonable
buffers. That too will frustrate clients, as they will always want the product sooner.

Tracking tools will ensure that we become more realistic about our estimates. This
is because we will know for real, how much time it really took to do a task, with
time tracking in place. We can use that experience next time around for estimating
the efforts required to complete a given task. This does not mean that it will make
our estimates precise over time, but it means we will come close to reality with our
estimates, more often than not.

Sometimes, tracking tools can be seen as a means to micro management because
the project and organizational leadership can drill down the details of how each
individual works. But that should not be the correct attitude when looking into the
use of tracking tools for the project. It should be understood that these tools are for
the betterment of the project and the project's team. For example, if one person does
something sooner than the other, there will be some productivity tips to learn form
the team member who did it faster. If a member seems to get the estimated numbers
right, which would reflect form the tracking system, we would be able to ask him to
teach others the secret of success.

www.it-ebooks.info

http://www.it-ebooks.info/

Ways of Collaboration

[146]

Summary
This chapter was dedicated to the topic of communication and collaboration. The
PHP project is about delivering high quality PHP code that works. Note that it is not
just the PHP code. The phrase 'that works' is very important. That is, the PHP code
needs to work within the expectations of the users.

To make sure that the software we develop is 'working software', we need
to collaborate very closely with all of the stakeholders. The developer-user
collaboration is the key and is the most important. The developer-developer
collaboration is also important for the project's success.

There are various channels to facilitate collaboration that can bring great benefits
when used appropriately. Emails, instant messaging, conference calls, and face-to-face
communication are some of those channels. Web 2.0 technologies also add a lot of
other channels, including forums, Wiki pages, and social networking sites.

Source control, bug tracking, and configuration management are interdependent
activities that, if done right, will contribute to the success of the project by a
great deal.

Time tracking tools, and historical data that is collected through them, can help to
increase project visibility and predictability. Thus, the chance of a project's success
increases. More than egos or concerns over micro-management possibilities, the
team needs to focus on the potential to succeed with tracking tools.

The channels and tools are of no use if the team members and users do not make
effective use of them. It is up to the developers and users to make the best use of
them and be effective to ensure project's success. Rather than trying to define rules
to govern how to use the channels, let the team use the channels and figure out the
best use for each one over time.

www.it-ebooks.info

http://www.it-ebooks.info/

Continuous Improvement
Change is inevitable. No matter how hard we try, we will not be able to live without
changing the PHP code that we have already written. Sometimes it will come in the
form of enhancements, improvements, or new features requested by users. Other
changes will come from bugs in the system. No matter how perfect the design or the
PHP code is, we will need to face these change requests and we will need to change
the code.

Change should be embraced with positive attitude and should be treated as an
opportunity for evolution. No system, be it written in PHP or any other programming
language, would ever be perfect. Therefore, there is always room for improvement.
The idea is not to keep on improving the PHP code in an infinite loop, rather, it is
to improve as and when the need arises. Moreover, by design, the system needs to
support the change.

Whenever you change a piece of software that is working, it might break. No matter
how experienced the PHP developer is, the chances of him breaking something in the
system due to a change is real. This is why it is said that working software should not
even be touched. On one hand, changes must be done. On the other hand, changes
pose the risk of breaking the system. Therefore, we need to devise mechanisms to
facilitate the change without breaking the system.

Plans don't always work, but we ought to keep on planning. We might have well
defined and well documented processes and procedures within the organization.
However, if those plans are inflexible, we will not progress at all. This also applies
to the PHP software project on which we are working. In order to make sure we
achieve successful completion of the project, not only should we have a process, but
we should also be willing to adjust, change, and adopt the process at any stage of the
project. In other words, we should continuously improve along the way.

www.it-ebooks.info

http://www.it-ebooks.info/

Continuous Improvement

[148]

In order to achieve continuous improvement, we need to know the following few
things regarding our PHP project:

•	 Where are we?
•	 Where are we going?
•	 Where do we want to go?

In order to answer these questions, we need to have data about the PHP project on
which we are working. For data collection, we need to measure the outcomes of
the projects and the PHP system that is being developed. This will help us to make
informed decisions on the process.

In this chapter, we will be discussing the following:

•	 Dealing with change in PHP applications
•	 Ensuring that the change process is effective
•	 Evolving the PHP application
•	 People development
•	 Ensuring success with teams

Dealing with change in PHP applications
As it is not possible to live without a change, the smart approach to deal with the
change is to design the system with room for change. For example, in the PHP
application, the template based approach for designing the presentation layer
will facilitate future changes of the user interface with minimal effort. The PHP
framework that we choose has a lot of say here. If the PHP framework allows us to
maintain and manage all of the templates with minimal effort and in a systematic
manner, then we will have little to worry about serving the user change requests.
The presentation layer is only one example. The data layer and the business logic
layer can also be subjected to change.

Facilitating the change is a mindset, more than a technical issue. If the team members
are reluctant to change the PHP code, then it is hard to facilitate the change. Also, the
developers need to keep in mind the need for change. That way, they will seek for
the features in the framework and use tools that will help themselves in designing
the system for the change.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[149]

Simple techniques, such as declaring constants, rather than hardcoding the values
into the PHP code, abstracting out the logic into functions, classes, and components,
and leaving a room for alternate logic when implementing the PHP code can
also facilitate the ease of change at the PHP code level. For example, let's take a
constant string value. At first, it might seem as if there is only one use of the string
and we can have the value used in the code logic segment itself. Over time, as the
system evolves, the number of uses for the string can increase. Let's say the string
represents a URL and the URL changes. We might now need to change all references
to the string in the code. If we used a constant, instead of hard coding the value
everywhere, we just need to make a change in one place. The same applies to the
logic segments that can be implemented using the same code. When we want to
upgrade the functionality, we need to apply the change in multiple places. If we
encapsulate the common logic segments into a function and call that function, then
it becomes simple to upgrade the logic, as there is only one place to change.

One technique that can be useful when designing the system with future changes in
mind is to evolve the system as the project progresses, rather than trying to implement
the complete solution in one go. This is the advantage of using an iterative approach
to the delivery of the system. Implement some useful functionality, deliver it to the
user, collect feedback, and then improve it based on the feedback. Improvements done
to satisfy the users' feedback evolves the system to the next level and changes the
system for its betterment. This is one of the reasons why the agile process encourages
collaborating closely with the users. We discussed the agile principles in Chapter 5,
Agile Works Best, of this book.

Evolution of the system should be stepwise, rather than big-bang. Big-bang evolution
is not sustainable and destroys ecosystems. Therefore, first, the team members need
to be made aware of the phase and scale of the changes that they are doing, and
then break them into smaller chunks. Breaking changes into smaller chunks helps to
ensure that we do not break the system while evolving.

Doing changes in smaller chunks alone will not ensure a stable system state after the
change. We also need a system, a set of tools to ensure that we do the right changes,
so that we are not breaking the system. As discussed in the previous chapter, the
best tool that we can use to prevent instability after a change is a test framework. All
tests in the framework should pass, both before and after the change. This is the best
known technique to prevent regression issues.

If the change in the PHP code results in a behavior change that also requires one or
more existing tests to be updated, then the tests also need to be changed. Thus, system
integrity is ensured. Also note that some changes will require new tests to be written.
This is to make sure that the integrity of the current feature improves against the
future changes.

www.it-ebooks.info

http://www.it-ebooks.info/

Continuous Improvement

[150]

Test-based verification of integrity is a welcome habit to be developed by all team
members in the PHP team. The trivial nature of the PHP code changes should not
be taken for granted, and running the test framework should not be skipped at any
time. If one does, it could be hard to locate the point at which the system started
breaking. This especially applies to situations where the code is shared through a
source control system.

Backward compatibility is another key concern in the evolution of the PHP product.
When changes are done, we need to ensure that previous versions that are delivered
through the previous iteration of the project are not drastically different form the
latest version. There are various implications in being backward compatible. One
is that the user interface of the evolved system should not have a drastic face lift
from the previous version. This is because the users are already familiar with the
older interface. If the changes are very drastic, such as the form submission button
that used to be on the left bottom is now on the right bottom, the users will take
a considerable amount of time to adapt. Sometimes, changes are so large that we
might not even imagine learning and getting used to it. This is the presentation
aspect of being backward compatible. One might call this being consistent with
respect to the user interface. The data layer and the business logic layer needs to
keep to the backward compatibility principle. For example, if an API is changed, it
is advisable not to delete the older API right away. Instead, mark it to be deprecated
first and then make it obsolete in a future release and not the current release. You
can either use a warning level log message or a console message to warn against the
use of a deprecated API call. In addition to these warning messages, it must also be
documented in the PHP code so that anyone referring to the API code or the API
documents would notice.

Ensuring process effectiveness
In Chapter 4, The Process Matters, we discussed the need for a process. While having a
process is important, we also need to ensure that the process fits the project on which
we are working, and is effective. The process should help people to write quality
code, be productive with the work, and encourage collaboration.

Knowing how we are doing is important before we try and improve the process.
The best way to get to know about how it is doing is to have some measurements on
the process and the product. There are numerous measurements that we can make
on the process and the outcome of the process, which is the product. Some possible
things that we can measure are as follows:

•	 The number of PHP classes in the system
•	 The number of PHP functions
•	 The number of presentation layer pages

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[151]

•	 The number of forms and reports
•	 The number of PHP classes or functions that are added per day, week,

or month
•	 The number of presentation forms, reports that are added per day, week,

or month
•	 The number of PHP classes or functions that are written by a developer per

day, week, or month
•	 The number of bugs that are raised per day, week, or month
•	 The number of bugs being fixed per day, week, or month
•	 The number of PHP code that commit messages to the source code repository

per day, week, or month
•	 The number of emails or forum messages sent that are posted per day, week,

or month by developers or users
•	 The number of visits made to the Documentation Wiki per day, week,

or month

Measurements alone will not drive us towards any progress. Measured data needs
to be analyzed, and information should be extracted and actions should be taken
based on the outcomes of the analysis. Also, it is important to correlate the related
measurements to extract the real meaning of the data and the implications of those
on the PHP project.

For example, the greater the number of issues that are being fixed per day portrays
a good picture on the performance of the PHP team. However, we also need to take
into account the number of issues being raised per day. If the rate of opening bugs
and resolving those bugs are parallel, then we do not have an issue. However, if
the issue's open rate is much higher than the issue's fix rate, then it requires further
investigation, as to what is going on.

Some simple measurement, such as the number of visits to the Documentation Wiki,
can reveal a wealth of information on the quality of the project. For example, if the
visits to the API documentation are high, then that indicates the PHP developers do
make use of API calls written by others. Fewer number of visits would indicate that
the other developers are not using that API. No matter how expert or how smart
the team members are, it is not easy to remember all API calls. Thus, if they are
really using it, they will need to refer to the API documentation. However, the team
members who are always visiting the API documentation may also mean that the API
is not designed properly. It is at the beginning of the use of an API that a newbie to
the API needs to refer to the documents. When the user of the API becomes familiar
with it, it becomes intuitive to use without spending much time on reading the
documents. Therefore, the evaluation of the number of visits to the documents needs
to be combined with context and realities on the ground to depict the real meaning.

www.it-ebooks.info

http://www.it-ebooks.info/

Continuous Improvement

[152]

If we keep on adding new features, that would mean that the PHP code cannot be
made stable. We can use the number of code changes done in a particular period
of time to help determine the active development patterns. Nearing a release of
the number of commits has to go down as the PHP code gets stabilized. But in the
early stage of iteration, there should be lots of code changes going on. If we have
the reverse pattern, that would mean we are not doing a good job with the release
management. If we have lots of commits towards the latter part of the project
iteration, the chances of missing the deadline is higher, as it takes time for changes to
stabilize. Over time, if we repeatedly see that we require some sleepless nights, and if
we double or triple the regular efforts towards the end of the iteration, then it would
be time to fix the formation of our process.

It would also be useful to talk to team members to figure out how they feel about
the process. The PHP team themselves can provide an insight as to how effective
the process is, and what elements of the process help them and what hinders them.
Team satisfaction towards the process in use can be highly subjective. Yet it is an
important aspect that determines the success of the project.

If the PHP team members are repeatedly skipping a step in the process, or do not
adhere completely to the guidelines set fourth, that is an indication of the ineffective
procedures. We must take steps to improve those in the process, or else, after some
time, we will either be left without a proper process, or will end up with an ad hoc
set of steps to write and debug the PHP code.

Developer feedback and the metrics generated based on the data collected should
help us to make informed decisions to enhance the process in use. The learning
outcomes of the past iterations or past projects can be fed into the future iterations or
projects. Therefore, process improvements should not be viewed as a single process
exercise. As the way we use learning outcomes on PHP APIs and features from
one project to another, we can use the project related learning outcomes across the
projects on which we work.

Similar to the way in which users can provide useful feedback to the product that
is being delivered, we can also get the users to help us improve the process, both
directly and indirectly. On the fact whether we are able to deliver quality software
or not, the bugs raised by users provide direct feedback on the process. More bugs
being reported by the users means that the users are really using the system. It also
means that the users want to get it fixed as they see the fixed system to be useful to
them. If there are no bugs reported at all by the users, the chances are that the users
are not really using the application that we have developed. Thus, we should try and
figure out what is wrong by talking to the users.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[153]

The usage pattern for the PHP software that we develop also reveals useful
information on the process, as the product quality is directly related to the process.
The number of visits to the PHP-based site, the entry and exit patterns, the user
error frequencies, and even the visitor timing patterns will reveal information on our
project team capabilities. For example, the entry and exit patterns are related not only
to our ability to design user interface flow effectively, but also to the effectiveness of
our business logic flow design.

Ensure you are improving
Measuring is one thing. Taking steps to improve is another. Ensuring that we are
really improving is yet another activity.

To start with, we need to measure, or else we cannot make informed decisions to
improve the process we have. While taking steps to improve the process, we need
to keep on measuring. The old data and the new data then need to be compared
to ensure that the steps that we took with the intention of improving the process
have really helped. If the steps have not helped towards improving, then we need
to adjust again.

Fine-tuning and adjusting the process is an ongoing activity. In other words, we
need to be doing continuous improvement to the process. In a previous chapter, we
discussed the need for the process and the need for the process being agile. The agile
process not only helps with delivering the product with quality, it also helps with
process improvement. The self-organization of the team in affect means that they are
improving the way they work. Over time, the process gets improved naturally with
the agile process.

Evolving PHP applications
As we have discussed throughout this book, change is a must. As the project
progresses, the gap between the user and the PHP team closes, and the application
evolves from the first iteration to the last.

Not only will the user requirements change, but also the technologies, hardware,
platforms, and programming techniques and paradigms will change and evolve.
Even within a year, there can be a huge gap between what we used to do at the
beginning of the year and what we would be doing at the end of the year with respect
to technology. New technology hypes survive the mushroom factor, some of them
survive while some do not. Irrespective of the survival factor, we might need to peruse
them at a given point in time. The PHP team needs to be ready to live with that.

www.it-ebooks.info

http://www.it-ebooks.info/

Continuous Improvement

[154]

How can we ensure that new emerging technologies are incorporated into the
application that we are building? Sometimes, it will be the right technology to use.
Sometimes, it will not even make sense in the context of the project on which we are
working. The options available to us are as follows:

•	 Use the current technology that we are familiar with, but which might also
be an old technology

•	 Consider the state of the art technology, but with associated risks of
unknowns and unexpected outcomes

It might be hard to tell at times if we should embrace the new technology or not. Thus,
we might need to do some research and development, a quick proof of concept, or
a feasibility study. To minimize the risk, we might use only one or two of the team
members for evaluation while others focus on the regular activities. As an example,
take the use of some software as a service (SaaS) elements in our application. We
might want to evaluate it for some elements of our application, the SaaS model
might work. We used to develop the PHP applications based on a database. In other
words, our applications were data driven and we used them to manage our own
data. However, the new trend is to make use of services that are made available by
various service providers. Therefore, more than connecting to a database and pulling
the data, all that we need to do is access the service provided by a third party and get
our application done. Moreover, we can also become service providers to others. We
used to call it LAMP or WAMP (Linux/Windows, Apache, MySQL, PHP) because
the database was a part and parcel of the application. However, modern applications
would use a smaller database and a set of services from the Internet to implement the
application. Instead of being data driven, the application is now service oriented. The
team needs to be willing to embrace these sorts of paradigm shifts, as that provides
major business value to the application's users.

The framework that we are using right now might need to be updated in the next
release of the PHP application. Based on the changes done into the framework,
that could mean a major undertaking of application's evolution. Before upgrading
to the latest version of the framework, we must evaluate if it is really necessary
to go for a major framework upgrade of our application. If it is deemed that a
framework upgrade is not really beneficial, we should not upgrade just for the sake
of upgrading.

The set of PHP classes, the API, and the layouts of the presentation layer, will all
be subjected to evolution. For example, the advances in the Human-Computer
Interaction (HCI) technologies will demand us to improve our user interface designs
to match them.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[155]

We might need to enhance the logging mechanisms used in the PHP application
to match the business activity that is monitoring the needs of the client through
the PHP application. This might be a new challenge, as none of the team members
would have thought about this, as there was no need to think about it. This sort of
an improvement in the application is a new version of the application. It is different
from other features that we implement for the application as this needs to blend
into the rest of the existing application (the whole of it). The best solution in case
of other sorts of new features is to divide and conquer. First, we need a set of tests
that ensure that embedding by logging into the existing code does not break other
functionalities. Thus, we first need to build the tests. Then, we also need to look into
other non-functional aspects, such as performance and security. With more logging,
performance would drop, but that should not drop below the level where the user
would feel that it is slow. Security cannot be compromised at any cost. Therefore,
we might need a security audit after the evolution.

The client might have set forth security and performance aspirations at the beginning
of the project. With the evolution taking place, both the client and the PHP team
might forget to run the performance and security related tests on a regular basis.
Regular application performance evaluation and security audits must be carried out
on the application throughout the application's life cycle. These can be a part of the
regular test framework, but they require specific attention after every iteration that
evolves the application.

Understanding the needs of the enterprises with respect to application evolution
is also important. Let's have a look at an example, using the latest security updates
(applying security patches to libraries), techniques for achieving high performance
(using clustering techniques), and making use of existing applications and services
(using SOA principles and the cloud computing techniques). We cannot expect the
client to peruse enterprise trends alone and provide us with all of the information
we need. Sometimes, the client would not be aware of that and we might be able to
provide the client with the insight that is based on our past experiences.

Tools are the other aspect that are subject to evolution. The IDEs, the template tools,
the source code configuration tools, bug tracking tools, and even the PHP engine
evolve over time. We need to move along with them as a team. On one hand, we
will miss out on important features if we do not upgrade. On the other hand, the
users also want to keep on upgrading. Some systems take ages to migrate. The best
example is even after so many years of PHP 5, until recently, there was wide usage
of PHP 4. But as a PHP team, we need to be willing to even support PHP 6.

Note that the evolution of our PHP application needs to be synced with the
versioning strategy that we are using for our configuration management.

www.it-ebooks.info

http://www.it-ebooks.info/

Continuous Improvement

[156]

Any software system that does not evolve will die. This is because if the users see
that the software system is not meeting their expectations, they will abandon its use.
In order to keep supporting the user's expectations, the software system must keep
evolving because with the changes in the real world, the user's expectations also
keep on changing.

People development
People are the single most valuable resource in any software project. Moreover, it is
the greatest contributing factor for the success of any software project.

Keeping the PHP developers in the team happy all of the time is tough, but it is a
must. Sometimes, users can cause unhappiness. But we cannot model or manipulate
users' behavior. The best alternative is to train the developers to live with the
annoyances caused by the users. It is just a part of a developer's life.

Some of the team members do not want to do the same thing over and over again.
The best approach to solve this problem is to make sure that we balance out research
and development activities with regular development and bug fixing activities. It is
a fact that the project cannot afford to have novel and exciting work all of the time.
There will be tiring and boring activities. Balancing this less attractive work with
more attractive work is the only way we can keep all PHP developers excited.

Quality assurance is a skill. It is often taken for granted that anyone can do it.
However, that is far from correct. More importantly, the developers should have a
quality eye assurance when evaluating the code that they are developing. This can
be very useful when doing pair programming. The one without the keyboard (in the
pair) should put on a QA hat and explore possible cases of failure from time to time.

It is important to keep the team members happy to make sure that we can make
them a part of the active evolution. Most of the continuous improvement activities
that make the project successful require the will on the part of each team member.
Team members need to be willing to be subjected to change. It is a mindset.

To make sure that we help each individual to improve, we need to be straight and
open with each team member. We need to show the shortcomings then and there.
Also, we need to applaud and reward hard work. Sometimes, sloppy work on the
part of developers can lead to a lot of work and it could be misinterpreted as hard
work. For example, the person who creates ten bugs needs to work for longer hours
than the one who creates just three bugs. Thus, before rewarding someone who
works for longer hours late into the nights and sometimes into the weekends, we
need to evaluate the real reason for those long hours.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[157]

Rewarding the wrong person due to misjudgment can lead real workers (who get the
job done right) into dissatisfaction. It is more damaging to the project's team in the
long run. Rather than hard work, we need to reward smart work and quality work.

Do not work hard, but smart.

Training is important. Training can be on technical matters and non-technical factors.
Technical matters can be taken for granted and overlooked. Therefore, sometimes it
is good to repeat some training sessions, especially for those who have joined new.
Team members can choose to participate, as they wish. However, there are tons of
resources available on the Web today, and some say you just need to Google. It is far
more efficient and effective to have a trainer to train the team. We have the flexibility
to customize the training to suite the specific needs of the team. Also, we can get
expert team members to do the training.

Training on non-technical aspects, such as communication, collaboration, teamwork,
leadership, time management, and productivity can help the team to improve the
way they work. The need for training required by the team member should be
picked up by observing the way they work and the way they adhere to the process.
The problem areas need to be identified and training should be organized to solve
those problems.

The frequency and timing of the training needs to be picked carefully as well. Too
many training sessions too often, would take away the meaning of the training. Also,
the team would see it as a trouble, rather than a help. The timing of the training is
useful so that the training on a particular area is done when the team needs it the
most. That way, the team's active and productive involvement in the training could be
guaranteed and best results could be reaped form the training for the project's success.

Teams and success
Success is a habit. In this context, success would mean building software according to
the client's needs. The team needs to be successful in all of the projects, not in one, not
in a couple. In other words, there should not be any failures at all, and it can be done.

The passion for success is built over time. With the techniques, such as agile
methodology, tools, and technologies of today, we always have room to find steps
for improvement.

www.it-ebooks.info

http://www.it-ebooks.info/

Continuous Improvement

[158]

Successful teams bond together over time. It has its pros and cons. On the positive side,
we have a very good understanding among the team members. Self-organization has
taken place and there should not be any barriers for collaboration. On the negative
side, the high level of team bonding might lead to high barriers for entry of new people
into the team. Team members would expect the same level of performance from new
members and might not be willing to allow time for the new member to settle in
and stabilize. One reason for this is the lack of understanding on the amount of time
required for a team to self-organize, as the current team is not aware of the time it
has taken.

Eliminating politics among the team members is also important. Over a period
of time, groups can be created unconsciously among team members, and the
power groups and powerhouses might form within the team. They will influence
decisions, and they will deviate from the objectives and processes in place. This is
not good for the team's health. All that is required is to have good rapport and good
communication. Beyond that, unhealthy politics should not take place.

Over time, inertia builds within the team and it makes the team harder to move.
Team inertia makes it hard for the team to evolve. One of the effects of agile
methodology is to break up this inertia and make the team agile and open to change.

Simplicity is an art. It is tempting to go after elaborate designs, and think and argue
about what is right and wrong. But from the user's perspective, the most important
thing is to get something working and get it improved step by step. Therefore, keep
it simple and make it usable. Do not ever try to come up with the perfect design in
the first iteration.

Managing the team
To ensure that the team heads where they are supposed to, there needs to be
someone who keeps the head straight and continues to look forward. Managing
people is one of the most challenging tasks. Moreover, it is harder to manage
educated people, such as software developers.

It is important to have a set of people who are trustworthy in a team. At the same
time, trustworthy does not mean that they agree to all of the others at all times.
It might seem that it is hard to manage a team with members that have different
opinions. But at the same time, different opinions can expose the team to better
alternatives. Therefore, it is good to have members on a team that seem to be hard to
manage, but at the same time explore the world and bring the findings into the team.

Managing a PHP team does not require one to sit in a glass room and pull hair all
day long. Chapter 5, Agile Works Best, mentioned what is required to move the team
along and work with the team.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[159]

Every project has a clear end goal, which is delivering a quality product on time. The
team needs to stay focused on this end goal. Moreover, it is the responsibility of the
team management to make sure that this focus is kept throughout the project, among
team members.

We allocate tasks to each member based on their skill sets. However, we cannot
always guarantee that we can create an exact match of skill set and the assigned
tasks. Therefore, we should make sure that the members are comfortable with the
task allocation, and that we help them to expand their skill set to meet the challenges.

It is a fact that various team members run into technical problems throughout the
project's life cycle. Problems often get worse, not because the problems are complex,
but because team members do not raise the problems soon enough. The team
management must keep all of the communication and collaboration paths open to
encourage timely escalation of problems by team members. Every team member
needs to be educated on the importance of escalation. Sometimes, some members
need to be probed for problems because it will take some time for them to figure
out on their own that there is a problem. We can make use of techniques, such as
stand-up meetings that we discussed in Chapter 5, Agile Works Best.

Team interaction is also important for successful team management. We discussed
this in detail in Chapter 6, Ways of Collaboration.

Conflicts are inevitable and need to be dealt with in the team's management. While
having members with different ideas is beneficial, it can also lead to conflicts. The
guiding principle to be used here is that everyone needs to stay focused on the
project's success. If the conflict is about what the right technology is, use objective
analysis to evaluate the impact of the conflicting alternatives on the project. If the
conflict is about subjective ideologies, the parties involved need to be educated
to focus on the project goals, rather than trying to delay the success of the project.
However, while the key message is simple and straightforward, some delicate
means, such as friendly face-to-face chat, must be used to convey this message to
the parties involved in resolving conflicts.

Leadership
We need leaders all of the time. We can build leaders through delegation and can
identify the real leaders in the process. Some people love to take responsibility, while
others are happy in focusing on what they are doing, rather than worrying about the
big picture. For those who want more ownership, it is best to give them a chance to
lead based on their skill set and willingness.

www.it-ebooks.info

http://www.it-ebooks.info/

Continuous Improvement

[160]

Meritocracy is a very good model to follow when identifying leaders. Reward those
who do valuable work. For this, we need to be able to identify the people who work
smart and get the job done. We can make use of metrics that we discussed earlier to
pick the smart workers. Moreover, we can combine those with the leadership skills
that they exhibit in guiding people around them to get the job done. If a person worries
about the overall project's direction, rather than just implementing his or her part of the
code, then that is a clear sign of someone who has the capacity to lead. A leader should
see the big picture, understand it, and direct others towards the end goals.

Some people emerge as leaders. They can get the team to achieve the project goals.
They drive others to achieve success. Rather than appointing someone to be the
leader, it would be useful to let these charismatic leaders guide the project towards
success. However, when it comes to situations where decisions need to be made,
having no clear point (as to whom to turn towards), would lead to chaos. Therefore,
there must be some appointed person with leadership authority to make decisions
and make the team move ahead when things are not flowing smoothly.

Quality focus
Elegant code, good documentation, bug free code, and simple design should be
encouraged all of the time. No one should think that quality is someone else's
responsibility. Quality is every team member's responsibility.

Constant monitoring
While discussing the agile process, we discussed the need for daily stand up
meetings. They basically help us to monitor what is happening with the project on
a daily basis. Carefully monitoring the needs of team members is quite critical to the
project's success.

Being sensitive to what each team member is going through all of the time is very
important. Sometimes, they might need some helping hand, or sometimes they just
might need some time.

The team is human
It is very important to remember that the team is a group of human beings. It is a
must that they enjoy their work. It is a must that they relax. It is a must that they
achieve their expectations from life. The software project is not the only thing in
their lives.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[161]

Summary
In this chapter, we discussed the need for continuous improvement in process,
product, and the people involved.

Knowing what we are doing, where we are heading, and where we should be
heading is very important for a software project. Metrics and measurements can
help us to evaluate our current situation and figure out what is to be done in order
to improve it. We can evolve the process that we use over time to have greater
effectiveness to deliver quality products. Nurturing people and helping them to
evolve is also critical because that helps both, the individuals and the team, a great
deal over time.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Index
A
AD

Focus groups 111
system 111

Adaptive Software Development. See ADS,
agile process models

ADS, agile process models
about 110, 111
Mission driven 111

agile development 95
agile development process

advantages 109
agile methodology

agile principles 96
agile values 96

Agile Modeling. See AM, agile process
models

agile philosophy
agile, customizing 100
change, responding to 99
customer collaboration 99
individuals and interactions 97, 98
working software over comprehensive

documentation 98
agile, PHP team

information-driven workspace 116, 117
iteration outcome, demonstrating 119, 120
pair programming 115, 116
process, fixing 117
sitting together 117, 118
stand-up meetings 119
ubiquitous language 118
working style 116

agile principles 96, 97

agile process
about 12
values 12

agile process models
Adaptive Software Development (ADS)

110, 111
Agile Modeling (AM) 114
Dynamic Systems Development Method

(DSDM) 111
Feature Driven Development (FDD) 114
Scrum 112

agile team 109, 110
agile team members, traits

about 102
collaboration 102
common focus 102
competence 102
decision-making, ability 102
fuzzy-problem solving, ability 103
mutual trust 103
respect 103

agile values 96
agility

about 103, 104
agile process, characteristics 105
principles 105, 106

Akelos 66, 67
AM, agile process models 114, 115
analysis paralysis 98
APIs 12
Application Programming Interfaces. See

APIs
ATK 66

www.it-ebooks.info

http://www.it-ebooks.info/

[164]

B
best practices

enforcing 54, 55
bug control 131
bug issues, classifying

new feature or improvement 134
real bug 134
use error 134

bug, PHP project
Bugzilla, URL, 135
controlling, 130
issue tracking software, 135
issue tracking system, 135
issue tracking system, in Wikipedia, 135
issues, 131
issues, classifying, 134
JIRA, URL, 135
status, 132
TODO note, writing in code, 130
Trac, URL, 135
tracking system, 134
tracking system, need for, 130-132
trend tracking, 135

bugs 82
bug, status

Closed 132
In-Progress 132
Open 132
Priority 133
Resolved 132
Severity 133

bug tracking system
about 132

bug tracking, tools
Bugzilla 25
Jira 25

Bugzilla, issue tracking software
URL 135

Bugzilla
URL 25

business layer
designs 89, 90
implementing 90

business logic layer
about 33
aspects 41

complexity 41
business modelling 87, 88

C
CakePHP 67
Code Bits section 65
CodeIgniter 67
Coding by Convention 55
coding standards 54
collaboration

ways 140
communication, tools

about 25, 26
calls, benefits 142
chat rooms, benefits 141
customer list 141
developer list 141
email 141
email lists and forums, differences 144
forums, benefits 144
instant messaging, benefits 141
leadership list 141
mailing lists 141
meetings, benefits 142
user list 141
white board, benefits 144
Wiki 142
Wiki, benefits 142, 143

community 57, 58
complexity

versus number of team members 38
configuration management, PHP project

about 139, 140
example 136
major version 138
minor version 138
need for 137
patch version 138
types 137

continous builds, tools 23, 24
continous integration 18, 19
controller

about 20, 32
business logic layer 33

Convention over Configuration 55

www.it-ebooks.info

http://www.it-ebooks.info/

[165]

D
data layer

about 33
complexity 42
designs 88
implementing 89

data modelling 86, 87
design pattern. See also software design

patterns
design pattern

about 30
benefits 30
documentation elements 30

developers, issues
Overworking 101
product, inferior quality 100
project completion, delay 101
wrong product, producing 100

divide and conquer
integration, guaranteeing 15
patterns 14
regression, preventing 15
reuse, guaranteeing 14

documentation, PHP framework 56
Drupal

URL 7
DSDM, agile process models

about 111
lifecycle 112
Pareto principle used 111

DSDM, lifecycle
business study 112
feasibility study 112
functional model iteration 112
implementation 112
iteration, building 112
iteration, designing 112

Dynamic Systems Development Method.
See DSDM, agile process models

E
Extreme Programming. See XP

F
Facebook

URL 7
FDD, agile process models 114
Feature Driven Development. See FDD,

agile process models
Flickr

URL 7
Focus groups, AD 111
framework. See also PHP framework
framework

expectations 49
features 46-48
team success 62, 64
technical feasibility 64

functional API
versus object oriented API 53

G
GIT

URL 22

H
HCI 154
horizontal

versus vertical division 15-17
Human-Computer Interaction. See HCI

I
integration

making work 126, 127
integration challenges 42
intellectual property implications. See IP

implications
internationalization, PHP framework 56
IP implications 61
issue tracking system, bug 135
issue tracking, tools 24, 25

www.it-ebooks.info

http://www.it-ebooks.info/

[166]

J
Jira, isuue tracking software

URL 135
Jira

URL 25
Joomla

URL 7

K
Keep it Short and Simple. See KISS
Keep it Simple, Stupid. See KISS
KISS

about 69
change, embracing 70, 71
innovation 70
Not Invented Here (NIH), avoiding 70
simplicity 71

L
LAMP 154
Limb 65
loadTeenagers() function 34

M
macro package 65
Mission driven, AD 111
model

about 20, 32
data layer 33

MVC
about 31
controller 32
dealing, with change 34-37
helping, ways 33, 34
intent 31
library system, example 34, 35
mapping, into real implementation 34
model 32
motivation 31
solution 32
view 32

MVC, implementing with team
about 38
presentation layer (view), aspects 38-40
team distribution 42

MVC Pattern. See MVC

N
NIH

avoiding 70
Not Invented Here. See NIH
number of team members

versus complexity 38

O
object oriented API

versus functional API 53
Object-Oriented Programming. See OOP
Object Relational Mapping. See ORM
OOP 14
ORM 62

P
Pareto principle 111
patterns

as solutions 19, 20
PDO 42
people, PHP project

development 156
PHP

about 7
process effectiveness, ensuring 153
process effectiveness, measuring 150-152

PHP applications
changes, dealing with 148-150
evolving 153-155
improving, need for 36

PHP code
changes, need for 147

PHP Data Objects. See PDO
phpDrone 65
PHP framework

about 65, 148
Akelos 66, 67

www.it-ebooks.info

http://www.it-ebooks.info/

[167]

ATK 66
CakePHP 67
CodeIgniter 67
features 46- 48
Limb 65
phpDrone 65
PHP Work 68
Symfony 68
team success 62, 64
technical feasibility 64
Zend Framework 67, 68
ZNF 66

PHP framework, expectations
about 49
AJAX support 52
best practices, enforcing 54, 55
commercial support 58-60
community 57, 58
configuration needs 55
documentation 56
framework, size 50
hosting, availability 61, 62
HTML, separating from PHP 52
internationalization 56
license 60, 61
no restrictions 52, 53
object oriented API versus functional API

53
performance 51
project, code quality 53, 54
security 51
simplicity 50
vendor locking 61

PHP project
bug, controlling 130
communication, tools 140-144
configuration management 136-139
integrating 126, 127
people, development 156, 157
source, controlling 127
team members, assumptions 125
team work, challenges 124
tracking, tools 144

PHP projects
process 84

PHP projects, process
business layer, designs 89
business layer, implementing 90
business modelling 87, 88
data layer, designs 88
data layer, implementing 89
data modelling 86, 87
user activity, analysis 88
user interface, designs 90
user interface, implementations 91, 92
user requirements 85, 86

PHP team
agile 115
leadership 159
managing 158, 159
monitoring, constantly 160
people, development 156, 157
quality, focus on 160
success 157, 158
training 157
training, on non- technical aspects 157
training, on technical aspects 157

PHP Work 68
POC 51
presentation layer

about 33
aspects 38, 39
complexity 40

process
about 81, 82, 83
advantages 83
and product 74-77
effectiveness, ensuring 153
effectiveness, measuring 150-152
following 81
for PHP projects 84
for success 20
ignoring, consequences 77, 78
need for 78-81

process rigor 10
product

and process 74-77
programming languages

popularity 8
Proof of Concept. See POC

www.it-ebooks.info

http://www.it-ebooks.info/

[168]

Q
QA team 24
Quality assurance 156
quality assurance team. See QA team

R
Resolved, bug status 132
Ruby on Rails, URL 55

S
SaaS elements 154
Scrum, agile process models

about 112
backlog 113
demos 114
meetings 113
sprints 113

Search Engine Optimization. See SEO
SEO 37
software application

quality 74
software as a service. See SaaS
software design patterns

about 29, 30
benefits 30
documentation elements 30

software design patterns, documentation
elements

intent 30
motivation 30
name 30
solution 30

software engineering, principles
agile process 12
Application Programming Interfaces

(APIs) 12
continuous integration 18, 19
divide and conquer 13, 14
patterns, as solutions 19, 20
process, for success 20
process rigor 10
process, using 12
vertical versus horizontal division 15-17

software framework 46

software process
about 75
bugs 82
key areas 79, 80
life cycle 80

sorting algorithm 30
source code control, tools 21, 23
source control

about 127-130
branch 128
command line tools 129
CVS, URL 127
graphical tools 129
solutions 127
Subversion, URL 127
tag 128
trunk 128

Subversion. See SVN
Subversion, source control

branch 129
tags 129
URL 127

SVN
about 18
URL 22

Symfony 68
system, AD 111

T
team agility 109, 110
teams

need for 9, 10
team work, PHP project

challenges 124
team members, assumptions 125

Track, issue tracking software
URL 135

tools
about 21
communication 25, 26
continuous builds 23, 24
issue, tracking 24, 25
source code control 21, 23

tracking tools, PHP project 144, 145
trend tracking, bug 135

www.it-ebooks.info

http://www.it-ebooks.info/

[169]

U
UI 83
user activity

analysis 88
user interface

implementations 91, 92
User Interface. See UI

V
vertical

versus horizontal division 15-17
view

about 20, 32
presentataion layer 33

W
WAMP 154
web_app package 65
Web Programming 8
WordPress

URL 7

X
XP

coding 108
design 107
planning 107
testing 109

XP coding 108
XP design 107
XP planning 107
XP testing 109

Z
Zend Framework 67, 68
ZNF 66

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
PHP Team Development

Packt Open Source Project Royalties
When we sell a book written on an Open Source project, we pay a royalty directly to that
project. Therefore by purchasing PHP Team Development, Packt will have given some of the
money received to the open source PHP project.
In the long term, we see ourselves and you—customers and readers of our books—as part of
the Open Source ecosystem, providing sustainable revenue for the projects we publish on.
Our aim at Packt is to establish publishing royalties as an essential part of the service and
support a business model that sustains Open Source.
If you're working with an Open Source project that you would like us to publish on, and
subsequently pay royalties to, please get in touch with us.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.PacktPub.com.

www.it-ebooks.info

http://www.it-ebooks.info/

Object-Oriented Programming
with PHP5
ISBN: 978-1-847192-56-1 Paperback: 272 pages

Learn to leverage PHP5’s OOP features to write
manageable applications with ease

1. General OOP concepts explained

2. Implement Design Patterns in your applications
and solve common OOP Problems

3. Take full advantage of native built-in objects

4. Test your code by writing unit tests with
PHPUnit

Building Websites with PHP-Nuke
ISBN: 978-1-904811-05-3 Paperback: 320 pages

A practical guide to creating and maintaining your
own community website with PHP-Nuke

1. Step through creating your own web portal
with PHP-Nuke

2. Simple and practical guidance to mastering
PHP-Nuke

3. For people with basic knowledge of web
development

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Table of Contents
	Preface
	Chapter 1: Software is Complex
	Need for teams
	Software engineering principles to help
	Use a process
	Divide and conquer
	Guarantee reuse
	Guarantee integration
	Prevent regression

	Vertical versus horizontal division
	Continuous integration
	Patterns as solutions
	Process for success

	Tools
	Source code control
	Continuous builds
	Issue tracking
	Communication

	Summary

	Chapter 2: MVC and Software Teams
	Software design patterns
	MVC pattern
	Intent
	Motivation
	Solution
	Model
	View
	Controller

	How MVC can help
	MVC helps with change

	Implementing MVC with a team
	Aspects of the presentation layer (view)
	The overall team distribution

	Integration challenges
	Summary

	Chapter 3: Dealing with Complexity
	Frameworks to simplify complexity
	How can frameworks help?
	Expectations from frameworks
	Simplicity
	Size of the framework
	Performance
	Security
	Separate HTML from PHP
	AJAX support
	No restrictions
	Object-oriented versus functional
	Code quality of the project
	Enforce best practices
	Configuration needs
	Internationalization
	Documentation
	Community
	Commercial support
	License
	Vendor locking
	Availability with hosting
	Some more points to ponder

	Team success with frameworks
	Technical feasibility study of the framework
	PHP Frameworks
	Limb
	phpDrone
	ZNF
	ATK
	Akelos
	CakePHP
	CodeIgniter
	Zend Framework
	PHP Work
	Symfony

	KISS—beyond frameworks
	Beyond frameworks
	People are complex
	Avoid NIH

	Innovation
	Embrace change
	Simplicity is a mindset

	Summary

	Chapter 4: The Process Matters
	Process and product
	Ignoring the process
	Process must be respected
	From no process to some process
	Process helps not hinder
	Simple process for PHP projects
	User requirements
	Modeling what the users want
	Data modeling
	Business modeling

	User activity analysis
	Designs and implementing the data layer
	Designs and implementing the business layer
	Design and implementation of the user interface

	Summary

	Chapter 5: Agile Works Best
	Introducing agile philosophy
	Agile values
	Agile principles
	Individuals and interactions
	Working software over comprehensive documentation
	Customer collaboration
	Responding to change
	Customizing agile to our needs

	Common fears for developers
	Producing the wrong product
	Product of inferior quality
	Getting late to complete the project
	Too much work in too little time

	Traits of agile team members
	Competence
	Common focus
	Collaboration
	Decision-making ability
	Fuzzy-problem solving ability
	Mutual trust and respect

	What is agility
	Characteristics of an agile process
	Principles of agility

	Extreme Programming (XP)
	XP planning
	XP design
	XP coding
	XP testing

	Advantages of agile development process
	Team agility
	Agile process models
	Adaptive Software Development
	Dynamic Systems Development Method
	Dynamic Systems Development Method's life cycle

	Scrum
	Backlog
	Sprints
	Scrum meetings
	Demos

	Feature Driven Development
	Agile Modeling

	Agile for the PHP team
	Pair programming
	Sustainable working style
	Information-driven workspace
	Fixing the process
	Sitting together
	Ubiquitous language
	Stand-up meetings
	Demonstrate the iteration outcome

	Summary

	Chapter 6: Ways of Collaboration
	Team work is challenging
	Team members make assumptions
	Making integration possible

	Source control
	Bug control
	Configuration management
	Tools for communication and
collaboration
	Tracking tools

	Summary

	Chapter 7: Continuous Improvement
	Dealing with change in PHP applications
	Ensuring process effectiveness
	Ensure you are improving

	Evolving PHP applications
	People development
	Teams and success
	Managing the team
	Leadership
	Quality focus
	Constant monitoring
	The team is human

	Summary

	Index

